Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 238-251.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0588
Previous Articles Next Articles
XING Yuan1,2(), SONG Jian3, LI Jun-yi1, ZHENG Ting-ting1,2, LIU Si-chen1,2(), QIAO Zhi-jun1,2()
Received:
2023-06-20
Online:
2023-11-26
Published:
2023-12-20
Contact:
LIU Si-chen, QIAO Zhi-jun
E-mail:xy15315514037@163.com;lsch@163.com;nkypzs@126.com
XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica[J]. Biotechnology Bulletin, 2023, 39(11): 238-251.
基因名称Gene name | 序列Sequence(5'-3') |
---|---|
25S-F | AGGCAACAGAAACTCCATACG |
25S-R | ATGGCATAGCATTCATCACG |
SiAP2-F | AACATACCCACCTCGGTCTTC |
SiAP2-R | CGCCTTGTACTTCTTCATCCC |
SiAP3-F | GATACCTGCTACGACTTCACCG |
SiAP3-R | GCCGACATCATAGAGCACCTC |
SiAP4-F | ATGTCAGAGGGCGGCTACG |
SiAP4-R | TGGTGAGGCAGTACGAGAAGG |
SiAP9-F | TCCAGTCCACGCCGCTTATC |
SiAP9-R | CGAAGATGATGCCGCCACTC |
SiAP32-F | GGTGGTGGGCGGCAACTC |
SiAP32-R | CCAGCAGGCGGTTCTCCATC |
SiAP36-F | GCTGTCGTCGGCGTTCAAG |
SiAP36-R | GTCGGTATCGTGATGCTTCTCTG |
SiAP48-F | CATCAGCCAGAGGTGCCAGAG |
SiAP48-R | CGTGTTGGTGTAGTCGTCGTATTG |
Table 1 Sequences of primers
基因名称Gene name | 序列Sequence(5'-3') |
---|---|
25S-F | AGGCAACAGAAACTCCATACG |
25S-R | ATGGCATAGCATTCATCACG |
SiAP2-F | AACATACCCACCTCGGTCTTC |
SiAP2-R | CGCCTTGTACTTCTTCATCCC |
SiAP3-F | GATACCTGCTACGACTTCACCG |
SiAP3-R | GCCGACATCATAGAGCACCTC |
SiAP4-F | ATGTCAGAGGGCGGCTACG |
SiAP4-R | TGGTGAGGCAGTACGAGAAGG |
SiAP9-F | TCCAGTCCACGCCGCTTATC |
SiAP9-R | CGAAGATGATGCCGCCACTC |
SiAP32-F | GGTGGTGGGCGGCAACTC |
SiAP32-R | CCAGCAGGCGGTTCTCCATC |
SiAP36-F | GCTGTCGTCGGCGTTCAAG |
SiAP36-R | GTCGGTATCGTGATGCTTCTCTG |
SiAP48-F | CATCAGCCAGAGGTGCCAGAG |
SiAP48-R | CGTGTTGGTGTAGTCGTCGTATTG |
Fig. 1 Gene structure and conservative motif analysis of members of SiAPs in Setaria italic A: Cluster analysis of AP gene family members in foxtail millet(Seitaria italic). B: Conservative domain of AP gene family members in foxtail millet. C: Gene structure map of SiAPs members in foxtail millet. D: Logo of conserved motif of SiAPs in foxtail millet
Fig. 3 Distribution of AP gene family members on chromosomes in S. italic 1-9 represents chromosome 1-9 in S. italic, respectively. The interior of the chromosome is filled with gene density, with colors ranging from blue to red indicating a gradual increase in gene density
Fig. 4 Collinearity analysis of AP gene family in S. italic 1-9 represents chromosome 1-9 of S. itlica. The heat map represents gene density, with increasing gene density from blue to red
Fig. 5 Collinearity analysis of SiAPs gene family members and AP genes in A. thaliana, O. sativa and Z. mays A: The synteny analysis of AP genes in S. italica and Z. mays; B: the synteny analysis of AP genes in S. italica and O. sativa; C: the synteny analysis of AP genes in S. italica and A. thaliana
Fig. 9 Expression analysis of AP gene family members in S. italica induced by 0.25 mmol/L salicylic acid Error bars are standard errors. The different letters in the figure indicate significant differences(P < 0.05). The same below
[1] |
Mutlu A, Gal S. Plant aspartic proteinases: enzymes on the way to a function[J]. Physiol Plant, 1999, 105(3): 569-576.
doi: 10.1034/j.1399-3054.1999.105324.x URL |
[2] | Chen HJ, Huang YH, Huang GJ, et al. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence[J]. J Plant Physiol, 2015, 180: 1-17. |
[3] |
Simões I, Faro C. Structure and function of plant aspartic proteinases[J]. Eur J Biochem, 2004, 271(11): 2067-2075.
doi: 10.1111/j.1432-1033.2004.04136.x pmid: 15153096 |
[4] |
Chen F, Foolad MR. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration[J]. Plant Mol Biol, 1997, 35(6): 821-831.
pmid: 9426602 |
[5] |
Soares A, Ribeiro Carlton SM, Simões I. Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses[J]. J Exp Bot, 2019, 70(7): 2059-2076.
doi: 10.1093/jxb/erz034 pmid: 30715463 |
[6] | 高杉, 蓝兴国. 植物天冬氨酸蛋白酶的结构与功能[J]. 生物技术通讯, 2018, 29(6): 866-870. |
Gao S, Lan XG. Structure and function of aspartic proteinases in plants[J]. Lett Biotechnol, 2018, 29(6): 866-870. | |
[7] |
Tamura T, Terauchi K, Kiyosaki T, et al. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds[J]. J Plant Physiol, 2007, 164(4): 470-477.
doi: 10.1016/j.jplph.2006.02.009 URL |
[8] |
Yao X, Xiong W, Ye TT, et al. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis[J]. J Exp Bot, 2012, 63(7): 2579-2593.
doi: 10.1093/jxb/err433 URL |
[9] | Shen WZ, Yao X, Ye TT, et al. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination[J]. Plant Cell Physiol, 2018, 59(7): 1415-1431. |
[10] |
Guo RR, Zhao J, Wang XH, et al. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance[J]. Plant Cell Tiss Organ Cult, 2015, 121(2): 275-287.
doi: 10.1007/s11240-014-0699-6 URL |
[11] |
Xia YJ, Suzuki H, Borevitz J, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling[J]. EMBO J, 2004, 23(4): 980-988.
doi: 10.1038/sj.emboj.7600086 URL |
[12] |
Prasad BD, Creissen G, Lamb C, et al. Overexpression of rice(Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis[J]. Mol Plant Microbe Interact, 2009, 22(12): 1635-1644.
doi: 10.1094/MPMI-22-12-1635 URL |
[13] |
Breitenbach HH, Wenig M, Wittek F, et al. Contrasting roles of the apoplastic aspartyl protease apoplastic, enhanced disease susceptibility1-dependent1 and legume lectin-like protein1 in Arabidopsis systemic acquired resistance[J]. Plant Physiol, 2014, 165(2): 791-809.
pmid: 24755512 |
[14] | 黄相玲, 张仁志. 植物抗逆生理机制研究进展[J]. 南方农业, 2021, 15(34): 96-99, 103. |
Huang XL, Zhang RZ. Study progress in resistance to adverse physiological mechanism of plants[J]. South China Agric, 2021, 15(34): 96-99, 103. | |
[15] | 冯军. 水杨酸介导的草莓抗白粉病的分子调控机制[D]. 北京: 北京林业大学, 2020. |
Feng J. The molecular regulatory mechanism of salicylic acid-primed strawberry resistance against Podosphaera aphanis[D]. Beijing: Beijing Forestry University, 2020. | |
[16] |
Zeng XQ, Wang LB, Fu YL, et al. Effects of methyl salicylate pre-treatment on the volatile profiles and key gene expressions in tomatoes stored at low temperature[J]. Front Nutr, 2022, 9: 1018534.
doi: 10.3389/fnut.2022.1018534 URL |
[17] |
杨小环, 赵维峰, 孙娜娜, 等. 外源水杨酸缓解低温胁迫对玉米种子萌发和早期幼苗生长伤害的生理机制[J]. 核农学报, 2017, 31(9): 1811-1817.
doi: 10.11869/j.issn.100-8551.2017.09.1811 |
Yang XH, Zhao WF, Sun NN, et al. Physiological mechanisms of exogenous salicylic acid-mediated low temperature tolerance in seed germination and early seedling growth of maize[J]. J Nucl Agric Sci, 2017, 31(9): 1811-1817.
doi: 10.11869/j.issn.100-8551.2017.09.1811 |
|
[18] |
周杰, 黄婷婷, 赵光武, 等. 水杨酸调控种子低温萌发能力的机制研究[J]. 核农学报, 2018, 32(8): 1649-1655.
doi: 10.11869/j.issn.100-8551.2018.08.1649 |
Zhou J, Huang TT, Zhao GW, et al. Research on mechanisms of salicylic acid-induced chilling tolerance in seeds[J]. J Nucl Agric Sci, 2018, 32(8): 1649-1655. | |
[19] |
Jahani F, Tohidi-Moghadam HR, Larijani HR, et al. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint(Mentha piperita L.) under drought stress condition[J]. Arab J Geosci, 2021, 14(8): 1-12.
doi: 10.1007/s12517-020-06304-8 |
[20] | 马碧花. 水杨酸、航天诱变和内生真菌对多年生黑麦草抗逆性的影响[D]. 兰州: 兰州大学, 2020. |
Ma BH. Effects of salicylic acid, space mutation and Epichloë endophyte on stress resistance of Lolium perenne[D]. Lanzhou: Lanzhou University, 2020. | |
[21] | 徐雪雯, 王兴鹏, 王洪博, 等. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023(3): 188-194. |
Xu XW, Wang XP, Wang HB, et al. Effects of salicylic acid application on the growth and physiological characteristics of cotton seedlings under salt stress[J]. Crops, 2023(3): 188-194. | |
[22] |
李润枝, 靳晴, 李召虎, 等. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
doi: 10.3724/SP.J.1006.2020.04080 |
Li RZ, Jin Q, Li ZH, et al. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages[J]. Acta Agron Sin, 2020, 46(11): 1810-1816. | |
[23] | 刘敬科, 刁现民. 我国谷子产业现状与加工发展方向[J]. 农业工程技术: 农产品加工业, 2013(12): 15-17. |
Liu JK, Diao XM. Present situation and processing development direction of millet industry in China[J]. Agric Eng Technol, 2013(12): 15-17. | |
[24] |
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
Jia GQ, Diao XM. Current status and perspectives of innovation studies related to foxtail millet seed industry in China[J]. Sci Agric Sin, 2022, 55(4): 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
|
[25] | 刁现民. 育种创新造就谷子种业新发展[J]. 中国种业, 2022(4): 4-7. |
Diao XM. Breeding innovation creates new development of millet seed industry[J]. China Seed Ind, 2022(4): 4-7. | |
[26] |
Ji XR, Yu YH, Ni PY, et al. Genome-wide identification of small heat-shock protein(HSP20)gene family in grape and expression profile during berry development[J]. BMC Plant Biol, 2019, 19(1): 433.
doi: 10.1186/s12870-019-2031-4 |
[27] |
Rogozin IB, Wolf YI, Sorokin AV, et al. Remarkable interKingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution[J]. Curr Biol, 2003, 13(17): 1512-1517.
pmid: 12956953 |
[28] |
Xu JY, Xue CC, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90(Hsp90)gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One, 2013, 8(7): e69810.
doi: 10.1371/journal.pone.0069810 URL |
[29] |
Alam MM, Nakamura H, Ichikawa H, et al. Response of an aspartic protease gene OsAP77 to fungal, bacterial and viral infections in rice[J]. Rice, 2014, 7(1): 9.
doi: 10.1186/s12284-014-0009-2 URL |
[30] | 彭友良, 王琦. 中国植物病理学会2018年学术年会论文集[M]. 北京: 中国农业科学技术出版社, 2018: 251. |
Peng YL, Wang Q. Proceedings of the annual meeting of Chinese society for plant pathology(2018)[M]. Beijing: China Agricultural Science and Technology Press, 2018: 251. | |
[31] |
黄成, 梁晓梅, 戴成, 等. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
doi: 10.3724/SP.J.1006.2022.14023 |
Huang C, Liang XM, Dai C, et al. Genome wide analysis of BnAPs gene family in Brassica napus[J]. Acta Agron Sin, 2022, 48(3): 597-607.
doi: 10.3724/SP.J.1006.2022.14023 URL |
|
[32] |
Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 URL |
[33] | 张相琴, 陈振艳, 陈兰, 等. 茶树CsAP基因家族的全基因组鉴定及表达分析[J/OL]. 分子植物育种, 2023. http://kns.cnki.net/kcms/detail/46.1068.s.20230323.1345.009.html. |
Zhang XQ, Chen ZY, Chen L, et al. Genome wide identification and expression analysis of CsAP gene family in tea[J]. Mol Plant Breed, 2023. http://kns.cnki.net/kcms/detail/46.1068.s.20230323.1345.009.html. | |
[34] | 程相杰, 徐莉萍, 母小焕, 等. 玉米天冬氨酸蛋白酶基因家族的鉴定与表达分析[J]. 玉米科学, 2022, 30(1): 53-62. |
Cheng XJ, Xu LP, Mu XH, et al. Genome-wide identification and expression analysis of aspartic protease family in maize[J]. J Maize Sci, 2022, 30(1): 53-62. | |
[35] |
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models[J]. Nat Rev Genet, 2010, 11(2): 97-108.
doi: 10.1038/nrg2689 pmid: 20051986 |
[36] | 宋伟彬, 赵海铭, 赖锦盛. 2020年度中国玉米生物学研究进展[J]. 玉米科学, 2021, 29(5): 1-14. |
Song WB, Zhao HM, Lai JS. Progress on the maize biology research of China in 2020[J]. J Maize Sci, 2021, 29(5): 1-14. | |
[37] |
Yang YL, Feng DS. Genome-wide identification of the aspartic protease gene family and their response under powdery mildew stress in wheat[J]. Mol Biol Rep, 2020, 47(11): 8949-8961.
doi: 10.1007/s11033-020-05948-9 pmid: 33136247 |
[38] |
Raimbault AK, Zuily-Fodil Y, Soler A, et al. A novel aspartic acid protease gene from pineapple fruit(Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance[J]. J Plant Physiol, 2013, 170(17): 1536-1540.
doi: 10.1016/j.jplph.2013.06.007 URL |
[39] |
Niu NN, Liang WQ, Yang XJ, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nat Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396 pmid: 23385589 |
[40] |
Phan HA, Iacuone S, Li SF, et al. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(6): 2209-2224.
doi: 10.1105/tpc.110.082651 URL |
[41] | 汤龙军, 李鹏程, 朱璐, 等. 天冬氨酸蛋白酶在拟南芥和水稻中的分子进化、表达模式以及在花药发育中的功能分析[J]. 植物生理学报, 2015, 51(3): 323-336. |
Tang LJ, Li PC, Zhu L, et al. Identification, evolutionary and expression profile analysis of the aspartic protease gene superfamily in Arabidopsis thaliana and rice[J]. Plant Physiol J, 2015, 51(3): 323-336. | |
[42] |
Huang JY, Zhao XB, Cheng K, et al. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth[J]. J Exp Bot, 2013, 64(11): 3351-3360.
doi: 10.1093/jxb/ert173 pmid: 23918968 |
[43] |
Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell, 2006, 18(11): 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695 |
[44] |
Dawood MFA, Zaid A, Abdel Hamed Abdel Latef A. Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings[J]. J Plant Growth Regul, 2022, 41(5): 1919-1942.
doi: 10.1007/s00344-021-10381-8 |
[45] |
Timotijević GS, Milisavljević MDj, Radović SR, et al. Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat[J]. J Plant Physiol, 2010, 167(1): 61-68.
doi: 10.1016/j.jplph.2009.06.017 URL |
[46] |
Sebastián D, Fernando FD, Raúl DG, et al. Overexpression of Arabidopsis aspartic protease APA1 gene confers drought tolerance[J]. Plant Sci, 2020, 292: 110406.
doi: 10.1016/j.plantsci.2020.110406 URL |
[47] | 郭荣荣. 葡萄胚状体再生体系的建立及葡萄天冬氨酸蛋白酶家族基因功能研究[D]. 杨凌: 西北农林科技大学, 2015. |
Guo RR. The establishment of grape somatic embryo regeneration system and the functional study of aspartic proteases family gene in grape[D]. Yangling: Northwest A & F University, 2015. | |
[48] | 李倩. 水杨酸及其调控相关基因(SABP2、SAMT)在植物抗逆中的功能研究[D]. 天津: 天津大学, 2019. |
Li Q. Functional analysis of salicylic acid and its regulation-related genes(SABP2,SAMT)in plant stress tolerance[D]. Tianjin: Tianjin University, 2019. | |
[49] |
Shemi R, Wang R, Gheith ES MS, et al. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages[J]. BMC Plant Biol, 2021, 21(1): 574.
doi: 10.1186/s12870-021-03367-x pmid: 34872519 |
[50] | Siddique M, Qadir G, Gill S, et al. Bio-invigoration of rhizobacteria supplemented with exogenous salicylic acid and Glycine betaine enhanced drought tolerance in sunflower[J]. Int J Agric Biol, 2020, 23(5): 869-881. |
[1] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[2] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[3] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[6] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[7] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[8] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[9] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
[10] | GUO Zhi-hao, JIN Ze-xin, LIU Qi, GAO Li. Bioinformatics Analysis, Subcellular Localization and Toxicity Verification of Effector g11335 in Tilletia contraversa Kühn [J]. Biotechnology Bulletin, 2022, 38(8): 110-117. |
[11] | YU Qiu-lin, MA Jing-yi, ZHAO Pan, SUN Peng-fang, HE Yu-mei, LIU Shi-biao, GUO Hui-hong. Cloning and Functional Analysis of Gynostemma pentaphyllum GpMIR156a and GpMIR166b [J]. Biotechnology Bulletin, 2022, 38(7): 186-193. |
[12] | CHEN Jia-min, LIU Yong-jie, MA Jin-xiu, LI Dan, GONG Jie, ZHAO Chang-ping, GENG Hong-wei, GAO Shi-qing. Expression Pattern Analysis of Histone Methyltransferase Under Drought Stress in Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(7): 51-61. |
[13] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[14] | WANG Nan, ZHANG Rui, PAN Yang-yang, HE Hong-hong, WANG Jing-lei, CUI Yan, YU Si-jiu. Cloning of Bos grunniens TGF-β1 Gene and Its Expression in Major Organs of Female Reproductive System [J]. Biotechnology Bulletin, 2022, 38(6): 279-290. |
[15] | LI Yu-hang, WANG Xing-ping, YANG Jian, LUORENG Zhuo-ma, REN Qian-qian, WEI Da-wei, MA Yun. Expression and Functional Analysis of miR-665 in Bovine Mammary Epithelial Cell Inflammation [J]. Biotechnology Bulletin, 2022, 38(5): 159-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||