Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (1): 35-47.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.004
• Orignal Article • Previous Articles Next Articles
WANG Li-ping1, LUO Yun-zi1, 2
Received:
2016-09-26
Online:
2017-01-25
Published:
2017-01-19
WANG Li-ping, LUO Yun-zi. Applications of Synthetic Biology in the Research of Natural Product[J]. Biotechnology Bulletin, 2017, 33(1): 35-47.
[1] Luo Y, Enghiad B, Zhao H. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters[J]. Natural Product Reports, 2015, 33:174-182. [2] Zhang L, Yan K, Zhang Y, et al. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:4606-4611. [3] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940-943. [4] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349:1095-1100. [5] Miao V, Coëffetlegal MF, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology, 2005, 151:1507-1523. [6] Liao G, Shi T, Xie J. Regulation mechanisms underlying the biosynthesis of daptomycin and related lipopeptides[J]. Journal of Cellular Biochemistry, 2012, 113:735-741. [7] Kirby J, Keasling JD. Biosynthesis of plant isoprenoids:perspectives for microbial engineering[J]. Annual Review of Plant Biology, 2009, 60:335-355. [8] Majumder A, Jha S. Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel:An overview[J]. Journal of Biological Sciences, 2009, 1:46-69. [9] Walker K, Croteau R. Taxol biosynthetic genes[J]. Phytochemi-stry, 2001, 58:1-7. [10] Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29:683-696. [11] Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 27:29-34. [12] Misra BB. An updated snapshot of recent advances in transcriptomics and genomics of phytomedicinals[J]. Journal of Postdoctoral Research February, 2014, 2:1-14. [13] Blin K, Medema MH, Kazempour D, et al. AntiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers[J]. Nucleic Acids Research, 2013, 41:204-212. [14] Khaldi N, Seifuddin FT, Turner G, et al. SMURF:Genomic mapping of fungal secondary metabolite clusters[J]. Fungal Genetics & Biology Fg & B, 2010, 47:736-741. [15] Hwang KS, Kim HU, Charusanti P, et al. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites[J]. Biotechnology Advances, 2014, 32:255-268. [16] Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies[J]. FEMS Yeast Research, 2015, 15:1-9. [17] Luo Y, Li BZ, Liu D, et al. ChemInform abstract:Engineered biosynthesis of natural products in heterologous hosts[J]. Cheminform, 2015, 46:5265-5290. [18] Weber T, Charusanti P, Musiolkroll EM, et al. Metabolic engineering of antibiotic factories:new tools for antibiotic production in actinomycetes[J]. Trends in Biotechnology, 2014, 33:15-26. [19] Gaj T, Gersbach CA, Iii CFB. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31:397-405. [20] Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery[J]. Current Opinion in Biotechnology, 2014, 30:230-237. [21] Gibson DG, Lei Y, Chuang RY, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6:343-345. [22] Werner S, Engler C, Weber E, et al. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system[J]. Bioengineered Bugs, 2012, 3:38-43. [23] Chen WH, Qin ZJ, Wang J, et al. The MASTER(methylation-assisted tailorable ends rational)ligation method for seamless DNA assembly[J]. Nucleic Acids Research, 2013, 41:395-408. [24] Zhang L, Zhao G, Ding X. Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination[J]. Scientific Reports, 2011, 1:40-40. [25] Colloms SD, Merrick CA, Olorunniji FJ, et al. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination[J]. Nucleic Acids Research, 2014, 42:194-201. [26] Jiang Y, Chen B, Duan C, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied & Environmental Microbiology, 2015, 81:2506-2514. [27] Jin P, Ding W, Du G, et al. DATEL:a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase[J]. Acs Synthetic Biology, 2016, 5(9):1028-1032. [28] Miao V, Coëffetlegal MF, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology, 2005, 151:1507-1523. [29] Shao Z, Luo Y, Zhao H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler[J]. Molecular Biosystems, 2011, 7:1056-1059. [30] Yamanaka K, Reynolds KA, Kersten RD, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:1957-1962. [31] Schimming O, Fleischhacker F, Nollmann FI, et al. Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin[J]. Chembiochem, 2014, 15:1290-1294. [32] Fu J, Bian X, Hu S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30:440-446. [33] Yin J, Hoffmann M, Bian X, et al. Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 inStreptomyces coelicolor A3(2)[J]. Scientific Reports, 2015, 5:15081. [34] Lee NC, Larionov V, Kouprina N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast[J]. Nucleic Acids Research, 2015, 43(8):e55. [35] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3:e3647. [36] Weber E, Engler C, Gruetzner R, et al. A modular cloning system for standardized assembly of multigene constructs[J]. PLoS One, 2011, 6:e16765. [37] Marillonnet S, Werner S. Assembly of multigene constructs using golden gate cloning[J]. Methods in Molecular Biology, 2015, 1321:269-284. [38] Iverson SV. Improved modular multipart DNA assembly, development of a DNA part toolkit for E. coli, and applications in traditional biology and bioelectronic systems[J]. Dissertations & Theses-Gradworks, 2016. [39] Moore SJ, Lai HE, Kelwick RJR, et al. EcoFlex:A multifunctional MoClo kit for E. coli synthetic biology[J]. Acs Synthetic Biology, 2016, 5(10):1059-1069. [40] Li M, Elledge S. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC[J]. Nature Methods, 2007, 4:251-256. [41] Zhang Y, Werling U, Edelmann W. Seamless ligation cloning extract(SLiCE)cloning method[J]. Methods in Molecular Biology, 2014, 1116:235-244. [42] Nour-Eldin HH, Geu-Flores F, Halkier BA. USER cloning and USER fusion:the ideal cloning techniques for small and big laboratories[J]. Methods in Molecular Biology, 2010, 643:185-200. [43] Wang JW, Wang A, Li K, et al. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning[J]. Biotechniques, 2015, 58:161-170. [44] Jiang W, Zhao X, Gabrieli T, et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6:8101. [45] Zhang L, Wang L, Wang J, et al. DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination[J]. Journal of Molecular Cell Biology, 2010, 2:264-275. [46] Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Research, 2009, 37(2):e16. [47] Resnick MA, Larionov VL, Kouprina NY, et al. Transformation-associated recombination cloning:US, 6391642[P]. 2002-5-21. [48] Bian X, Huang F, Stewart FA, et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. colithrough Red/ET recombineering[J]. Chembiochem, 2012, 13:1946-1952. [49] Bassalo MC, Garst AD, Halweg-Edwards AL, et al. Rapid and efficient one-step metabolic pathway integration in E. coli[J]. Acs Synthetic Biology, 2016, 5(7):561-568. [50] Du D, Wang L, Tian Y, et al. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination inStreptomyces[J]. Scientific Reports, 2015, 5:8740. [51] Jin WB, Ye R, Clevenger KD, et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome[J]. Bmc Genomics, 2015, 16:1-10. [52] Kang HS, Charloppowers Z, Brady SF. Multiplexed CRISPR/Cas9 and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J]. Acs Synthetic Biology, 2016, 5(9):1002-1010. [53] Liu X. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns[J]. Synthetic & Systems Biotechnology, 2016, 1:95-108. [54] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107:2646-2651. [55] Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. Acs Synthetic Biology, 2015, 4(6):273-728. [56] Bai C, Zhang Y, Zhao X, et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products inStreptomyces[J]. Proceedings of the National Academy of Sciences, 2015, 112:12181-12186. [57] Chen Y, Xiang G, Yu J, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli[J]. Metabolic Engineering, 2016, 37:79-91. [58] Ulanova D, Kitani S, Fukusaki E, et al. SdrA, a new DeoR family regulator involved in streptomyces avermitilis morphological development and antibiotic production[J]. Applied & Environmental Microbiology, 2013, 79:7916-7921. [59] Komatsu M, Komatsu K, Koiwai H, et al. Engineered streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites[J]. Acs Synthetic Biology, 2013, 2:384-396. [60] Dangel V, Westrich L, Smith MCM, et al. Use of an inducible promoter for antibiotic production in a heterologous host[J]. Applied Microbiology & Biotechnology, 2010, 87:261-269. [61] Luo Y, Huang H, Liang J, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster[J]. Nature Communications, 2013, 4:94-105. [62] Jang KH, Nam SJ, Locke JB, et al. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete[J]. Angewandte Chemie International Edition, 2013, 52:7822-7824. [63] Alt S, Wilkinson B. Biosynthesis of the novel macrolide antibiotic anthracimycin[J]. Acs Chemical Biology, 2015, 10(11):2468-2479. [64] Van Heel AJ, Kloosterman TG, Montalbanlopez M, et al. Discovery, production and modification of 5 novel lantibiotics using the promiscuous nisin modification machinery[J]. Acs Synthetic Biology, 2016, 5(10):1146-1154. [65] Reed JW, Hudlicky T. The quest for a practical synthesis of morphine alkaloids and their derivatives by chemoenzymatic methods[J]. Accounts of Chemical Research, 2015, 48:674-687. [66] Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae[J]. Nature Chemical Biology, 2008, 4:564-573. [67] Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semi-synthetic opiates[J]. Nature Chemical Biology, 2014, 10:837-844. [68] Deloache WC, Russ ZN, Narcross L, et al. An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose[J]. Nature Chemical Biology, 2015, 11:465-471. [69] Fossati E, Narcross L, Ekins A, et al. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae[J]. PLoS One, 2015, 10:e0124459. [70] Kirby J, Keasling JD. Biosynthesis of plant isoprenoids:perspectives for microbial engineering[J]. Annual Review of Plant Biology, 2009, 60:335-355. [71] Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29:683-696. [72] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24:770-773. [73] Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science, 2015, 349:1224-1228. [74] Wang L, Hu Y, Zhang Y, et al. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027[J]. Bmc Microbiology, 2009, 9:12683-12690. [75] Gottelt M, Kol S, Gomezescribano JP, et al. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in streptomyces coelicolor A3(2)[J]. Microbiology, 2010, 156:2343-2353. [76] Law BJC, Struck AW, Bennett MR, et al. Site-specific bioalkylation of rapamycin by the RapM 16-O-methyltransferase[J]. Chemical Science, 2015, 6:2885-2892. [77] Nguyen KT, Ritz D, Gu JQ, et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:17462-17467. [78] Zarinstutt JS, Barberi TT, Gao H, et al. Prospecting for new bacterial metabolites:a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products[J]. Natural Product Reports, 2015, 33:54-72. [79] Liu Y, Tao W, Wen S, et al. In vitro CRISPR/Cas9 system for efficient targeted DNA editing[J]. Mbio, 2015, 6(6):e01714-15. |
[1] | ZHOU Lu-qi, CUI Ting-ru, HAO Nan, ZHAO Yu-wei, ZHAO Bin, LIU Ying-chao. Application of Chemical Proteomics in Identifying the Molecular Targets of Natural Products [J]. Biotechnology Bulletin, 2023, 39(9): 12-26. |
[2] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[3] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[4] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[5] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[6] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[7] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[8] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[9] | CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco [J]. Biotechnology Bulletin, 2023, 39(4): 259-267. |
[10] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[11] | WANG Xiao-mei, YANG Xiao-wei, LI Hui-shang, HE Wei, XIN Zhu-lin. Development Status of Synthetic Biology in Globe and Its Enlightenment [J]. Biotechnology Bulletin, 2023, 39(2): 292-302. |
[12] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[13] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[14] | ZHOU Shan-shan HUANG Yuan-long HUANG Jian-zhong LI Shan-ren. Research Progress in Bioactive Natural Products from Lysobacter [J]. Biotechnology Bulletin, 2023, 39(10): 41-49. |
[15] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||