[1] Lu SC. S-adenosylmethionine[J]. International Journal of Biochemistry and Cell Biology, 2000, 32:391-395. [2] Chan SY, Appling DR. Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2003, 278(44):43051-43059. [3] Shiozaki S, Shimizu S, Yamada H. Production of S-adenosyl-L-methionine by Saccharomyces sake[J]. Journal of Biotechnology, 1986, 4(6):345-354. [4] Cao XT, Yang MH, Xia Y. Strain improvement for enhanced production of S-adenosyl-L-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity[J]. Annals of Microbiology, 2012, 62:1395-1402. [5] Kanai M, Masuda M, Takaoka Y, et al. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway[J]. Applied Microbiology and Biotechnology, 2013, 97:1183-1190. [6] Shobayashi M, Mukai N, Iwashita K, et al. A new method for isolation of S-adenosylmethionine(SAM)-accumulating yeast[J]. Applied Microbiology and Biotechnology, 2006, 69:704-710. [7] Umeyama T, Okada S, Ito T. Synthetic gene circuit-mediated monitoring of endogenous metabolites:identification of GAL11 as a novel multicopy enhancer of S-adenosylmethionine level in yeast[J]. ACS Synthetic Biology, 2013, 2:425-430. [8] Hu XQ, Chu J, Zhang SL, et al. A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-L-methionine by methylotrophic Pichia pastoris[J]. Enzyme and Microbial Technology, 2007, 40:669-673. [9] Hu H, Qian JC, Chu J, et al. Optimization of l-methionine feeding strategy for improving S-adenosyl-l-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris[J]. Applied Microbiology and Biotechnology, 2009, 83:1105-1114. [10] Lin JP, Tian J, You JF, et al. An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation[J]. Biochemical Engineering Journal, 2004, 21:19-25. [11] 王杰鹏, 谭天伟. 发酵法生产S-腺苷蛋氨酸前体蛋氨酸补加策略[J]. 生物工程学报, 2008, 24(10):1824-1827. [12] Mincheva K, Kamberova V, Balutzov V. Production of S-adenosyl-L-methionine by a mutant strain of Kluyveromyces lactis[J]. Biotechnology Letters, 2002, 24:985-988. [13] Mincheva K, Kamberova V, Balutzov V. Optimization of S-adenosyl-L-methionine production by Kluyveromyces lactis on whey in batch culture using a mathematical model[J]. Biotechnology Letters, 2002, 24:1773-1777. [14] Hu H, Qian JC, Chu J, et al. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris[J]. Journal of Biotechnology, 2009, 141:97-103. [15] Kant HR, Balamurali M, Meenakshisundaram S. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-l-methionine employing molecular strategies with process tuning[J]. Journal of Biotechnology, 2014, 188:112-121. [16] He JY, Deng JJ, Zheng YH, Gu J. A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-β synthase[J]. Journal of Biotechnology, 2006, 126:519-527. [17] Zhao WJ, Shi F, Hang BJ, et al. The improvement of SAM accumulation by integrating the endogenous methionine adenosyltransferase gene SAM2 in genome of the industrial Saccharomyces cerevisiae strain[J]. Applied Biochemistry and Biotechnology, 2016, 178(6):1263-1272. [18] Lee SW, Park BS, Choi ES, et al. Overexpression of ethionine resistance gene for maximized production of S-andenosylmethionine in Saccharomyces cerevisiae sakekyokai No. 6[J]. Korean Journal of Chemical Engineering, 2010, 27(2):587-589. [19] Roje S, Chan SY, Kaplan F, et al. Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo[J]. Journal of Biological Chemistry, 2002, 227(6):4056-4061. [20] Chen YW, Xu DB, Fan LH, et al. Manipulating multi-system of NADPH regulation in Escherichia coli for enhanced S-adenosylmethionine production[J]. RSC Advances, 2015, 5:41103-41111. [21] Chen YW, Lou SY, Fan LH, et al. Control of ATP concentration in Escherichia coli using synthetic small regulatory RNAs for enhanced S-adenosylmethionine production[J]. FEMS Microbiology Letters, 2015, 362(15):1-8 |