Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (1): 106-113.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.011
• Orignal Article • Previous Articles Next Articles
ZHANG Chao1, WANG Yi-qiang1, WANG Qi-ye1, HUANG Rui-chun2, MI Xiao-qin2
Received:
2016-05-20
Online:
2017-01-25
Published:
2017-01-19
ZHANG Chao, WANG Yi-qiang, WANG Qi-ye, HUANG Rui-chun, MI Xiao-qin. Research Progress for Genetic Modification of Butanol-producing Clostridia[J]. Biotechnology Bulletin, 2017, 33(1): 106-113.
[1] Moon HG, Jang Y, Cho C, et al. One hundred years of clostridial butanol fermentation[J]. Fems Microbiology Letters, 2016, 363:3-18. [2] Berezina OV, Zakharova NV, Yarotsky CV, et al. Microbial producers of butanol[J]. Applied Biochemistry And Microbiology, 2012, 48(7):625-638. [3] Cho C, Jang YS, Moon HG, et al. Metabolic engineering of clostridia for the production of chemicals[J]. Biofuels, Bioproducts and Biorefining, 2015, 9:211-225. [4] Ding J, Xu G, Han R, et al. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864[J]. Bioresource Technology, 2016, 199:228-234. [5] Jin C, Yao M, Liu H, et al. Progress in the production and application of n-butanol as a biofuel[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8):4080-4106. [6] Uyttebroek M, Van Hecke W, Vanbroekhoven K. Sustainability metrics of 1-butanol[J]. Catalysis Today, 2015, 239:7-10. [7] Wang QY, Zhang C, Yao R, et al. Butanol Fermentation by Clostridium saccharobutylicum based on poplar wood[J]. Biores-ources, 2015, 10(3):5395-5406. [8] 钟洁, 王义强, 华涟滩, 等. 基于杨木纤维发酵产丁醇工艺条件的研究[J]. 中南林业科技大学学报, 2015(7):125-130. [9] 彭牡丹, 王义强, 王启业, 等. 糖丁酸梭状芽孢杆菌BAA-117利用不同碳源发酵产燃料丁醇的研究[J]. 可再生能源, 2014(11):1703-1709. [10] Li H, Zhang Q, Yu X, et al. Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour[J]. Bioresource Technology, 2016, 201:148-155. [11] Zheng J, Tashiro Y, Wang Q, et al. Recent advances to improve fermentative butanol production:Genetic engineering and fermentation technology[J]. Journal of Bioscience and Bioengineering, 2015, 119(1):1-9. [12] 毛绍名, 章怀云. 丙酮丁醇梭菌高耐丁醇突变株的选育及其生理特性的研究[J]. 中南林业科技大学学报, 2012(8):103-107. [13] 王义强, 王启业, 华连滩, 等. 高产丁醇菌株诱变选育及发酵研究[J]. 中南林业科技大学学报, 2015(10):120-126. [14] Xu M, Zhao J, Yu L, et al. Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production[J]. Applied Microbiology and Biotechnol, 2015, 99(2):1011-1022. [15] Ehsaan M, Kuit W, Zhang Y, et al. Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824[J]. Biotechnology for Biofuels, 2016, 9(1):4-24. [16] 顾阳, 杨晟, 姜卫红. 产溶剂梭菌分子遗传操作技术研究进展[J]. 生物工程学报, 2013(8):1133-1145. [17] Lutke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum:recent advances to improve butanol production[J]. Current Opinion in Biotechnology, 2011, 22(5):634-647. [18] Grimmler C, Janssen H, Krauβe D, et al. Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures ofClostridium acetobutylicum[J]. Journal of Molecular Microbiology and Biotechnology, 2011, 20(1):1-15. [19] Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8(6):536-546. [20] Ventura JS, Hu H, Jahng D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J]. Applied Microbiology and Biotechnology, 2013, 97(16):7505-7516. [21] Jiang Y, Xu C, Dong F, et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio[J]. Metabolic Engineering, 2009, 11(4-5):284-291. [22] Tummala SB, Welker NE, Papoutsakis ET. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum[J]. Journal of Bacteriology, 2003, 185(6):1923-1934. [23] Hönicke D, Lütke-Eversloh T, Liu Z, et al. Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways[J]. Applied Microbiology and Biotechnology, 2014, 98(23):9777-9794. [24] Cooksley CM, Zhang Y, Wang H, et al. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway[J]. Metabolic Engineering, 2012, 14(6):630-641. [25] Kuit W, Minton NP, López-Contreras AM, et al. Disruption of the acetate kinase(ack)gene of Clostridium acetobutylicum results in delayed acetate production[J]. Applied Microbiology and Biotechnology, 2012, 94(3):729-741. [26] Jang YS, Lee JY, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum[J]. Mcrobiology, 2012, 3(5):e312-e314. [27] Lehmann D, Hönicke D, Ehrenreich A, et al. Modifying the product pattern of Clostridium acetobutylicum[J]. Applied Microbiology and Biotechnology, 2012, 94(3):743-754. [28] Wang Y, Li X, Milne CB, et al. Development of a gene knockout system using mobile group II introns(targetron)and genetic disruption of acid production pathways in Clostridium beijerinckii[J]. Applied and Environmental Microbiology, 2013, 79(19):5853-5863. [29] Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J]. Cell Res, 2007, 17(11):963-965. [30] Harris LM, Desai RP, Welker NE, et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant:need for new phenomenological models for solventogenesis and butanol inhibition?[J]. Biotechnology and Bioengineering, 2000, 67(1):1-11. [31] Harris LM, Blank L, Desai RP, et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivatedsolR gene[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(5):322-328. [32] Lehmann D, Radomski N, Lütke-Eversloh T. New insights into the butyric acid metabolism of Clostridium acetobutylicum[J]. Applied Microbiology and Biotechnology, 2012, 96(5):1325-1339. [33] Liu J, Guo T, Wang D, et al. Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation ofCbei_4110[J]. Applied Microbiology and Biotechnology, 2016, 100(11):4985-4996. [34] Tomas CA, Beamish J, Papoutsakis ET. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum[J]. Journal of Bacteriology, 2004, 186(7):2006-2018. [35] Mann MS, Dragovic Z, Schirrmacher G, et al. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress[J]. Biotechnology Letters, 2012, 34(9):1643-1649. [36] Jia K, Zhang Y, Li Y. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum[J]. PLoS One, 2012, 7(6):e38815. [37] Nair RV, Green EM, Watson DE, et al. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor[J]. Journal of Bacteriology, 1999, 181(1):319-330. [38] Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824[J]. Journal of Bacteriology, 2002, 184(13):3586-3597. [39] Scotcher MC, Bennett GN. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824[J]. Journal of Bacteriology, 2005, 187(6):1930-1936. [40] Dong H, Zhang Y, Dai Z, et al. Engineering Clostridium Strain to Accept Unmethylated DNA[J]. PLoS One, 2010, 5:e90382. [41] Truffaut N, Hubert J, Reysset G. Construction of shuttle vectors useful for transforming Clostridium acetobutylicum[J]. Fems Microbiol Letters, 1989, 49(1):15-20. [42] Mermelstein LD, Papoutsakis ET. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824[J]. Applied and Environmental Microbiology, 1993, 59(4):1077-1081. [43] Croux C, Nguyen N, Lee J, et al. Construction of a restriction-less, marker-less mutant useful for functional genomic and metabolic engineering of the biofuel producer Clostridium acetobutylicum[J]. Biotechnology for Biofuels, 2016, 9(1):23. [44] Green EM, Bennett GN. Genetic manipulation of acid and solvent formation in clostridium acetobutylicum ATCC 824[J]. Biotechnology and Bioengineering, 1998, 58(2-3):215-221. [45] Desai RP, Papoutsakis ET. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum[J]. Applied and Environmental Microbiology, 1999, 65(3):936-945. [46] Tummala SB, Junne SG, Papoutsakis ET. Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations[J]. Journal of Bacteriology, 2003, 185(12):3644-3653. [47] Al-Hinai MA, Fast AG, Papoutsakis ET. Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration[J]. Applied And Environmental Microbiology, 2012, 78(22):8112-8121. [48] Soucaille P, Figge R, Croux C. Process for chromosomal integration and DNA sequence replacement in Clostridia[Z]. Google Patents, 2014. [49] Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron(targetron)vector in Clostridium acetobutylicum[J]. Cell Research, 2007, 17(11):963-965. [50] Heap JT, Pennington OJ, Cartman ST, et al. The ClosTron:a universal gene knock-out system for the genus Clostridium[J]. Journal of Microbiological Methods, 2007, 70(3):452-464. [51] Liao C, Seo S, Lu T. System-level modeling of acetone-butanol-ethanol fermentation[J]. Fems Microbiology Letters, 2016, 363(9):w74. [52] Wang Y, Li X, Blaschek HP. Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052:genome-wide transcriptional analysis with RNA-Seq[J]. Biotechnology for Biofuels, 2013, 6(1):138. [53] Mao S, Luo Y, Zhang T, et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield[J]. Journal of Proteome Research, 2010, 9(6):3046-3061. [54] Liao C, Seo S, Celik V, et al. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum[J]. Proceedings of the National Academy of Sciences, 2015, 112(27):8505-8510. [55] Ng CY, Takahashi K, Liu Z. Isolation, characterization, and optimization of an aerobic butanol-producing bacterium from Singapore[J]. Biotechnology And Applied Biochemistry, 2016, 63(1):86-91. |
[1] | LIU Yu-ling, WANG Meng-yao, SUN Qi, MA Li-hua, ZHU Xin-xia. Effect of RD29A Promoter on the Stress Resistance of Transgenic Tobacco with SikCDPK1 Gene from Saussurea involucrata [J]. Biotechnology Bulletin, 2023, 39(9): 168-175. |
[2] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[3] | JIANG Lu-yuan, FENG Mei-jing, DU Yu-qing, DI Bao, CHEN Duan-fen, QIU De-you, YANG Yan-fang. Semi-lethal Low Temperature and Taxane Content of Taxus Under Low Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(3): 232-242. |
[4] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[5] | SUN Yan-qiu, XIE Cai-yun, TANG Yue-qin. Construction and Mechanism Analysis of High-temperature Resistant Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(11): 226-237. |
[6] | XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica [J]. Biotechnology Bulletin, 2023, 39(11): 238-251. |
[7] | MAO Ke-xin, WANG Hai-rong, AN Miao, LIU Teng-fei, WANG Shi-jin, LI Jian, LI Guo-tian. Identification of GRAS Gene Family and Expression Analysis Under Low Temperature Stress in Actinidia chinensis [J]. Biotechnology Bulletin, 2023, 39(11): 297-307. |
[8] | YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans [J]. Biotechnology Bulletin, 2023, 39(11): 318-327. |
[9] | WU Bai-zeng, HE Qi, YAO Fang-jie, ZHAO Meng-ran. Identification of Lactate Dehydrogenase in Pleurotus ostreatus and Heat Stress Expression Analysis of Mycelium [J]. Biotechnology Bulletin, 2023, 39(11): 350-359. |
[10] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[11] | LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits [J]. Biotechnology Bulletin, 2023, 39(1): 31-39. |
[12] | XU Jin, LI Tao, LI Chu-lin, ZHU Shun-ni, WANG Zhong-ming, XIANG Wen-zhou. Effects of Temperature on the Growth,Total Lipid and Eicosapentaenoic Acid Synthesis of Eustigmatos sp. [J]. Biotechnology Bulletin, 2022, 38(6): 261-271. |
[13] | XUE Xian-li, WANG Jing-ran, BI Hang-hang, WANG De-pei. Effect of Spt7 Overexpression of on the Growth and Stress Resistance of Aspergillus niger [J]. Biotechnology Bulletin, 2022, 38(5): 112-122. |
[14] | JIN Jiao-jiao, LIU Zi-gang, MI Wen-bo, XU Ming-xia, ZOU Ya, XU Chun-mei, ZHAO Cai-xia. Identification of Low Temperature Stress-responsive Genes Regulating Photosynthetic Characteristics in the Leaves of Brassica napus by RNA-Seq [J]. Biotechnology Bulletin, 2022, 38(4): 126-142. |
[15] | CUI Jie-bing, ZHANG Meng, ZHANG Ying-ting, XU Jin. Effects of Low Temperature Stress on Different Clones of Cryptomeria fortunei and Evaluation of Their Cold Resistance [J]. Biotechnology Bulletin, 2022, 38(3): 31-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||