[1] Ceunen S, Geuns JMC. Steviol glycosides:chemical diversity, met-abolism, and function[J]. J Nat Prod, 2013, 76(6):1201-1228. [2]Shafii B, Vismeh R, Beaudry R, et al. Large-scale profiling of diterpenoid glycosides from Stevia rebaudiana using ultrahigh performance liquid chromatography/tandem mass spectrometry[J]. Anal Bioanal Chemi, 2012, 403(9):2683-2690. [3]Yadav SK, Guleria P. Steviol glycosides from Stevia:biosynthesis pathway review and their application in foods and medicine[J]. Crit Rev Food Sci Nutr, 2012, 52(11):988-998. [4]Bondarev NI, Sukhanova MA, Reshetnyak OV, et al. Steviol glycoside content in different organs of Stevia rebaudiana and its dynamics during ontogeny[J]. Biologia Plantarum, 2003, 47(2):261-264. [5]Guleria P, Yadav SK. Agrobacterium mediated transient gene silencing(AMTS)in Stevia rebaudiana:insights into steviol glycoside biosynthesis pathway[J]. PLoS One, 2013, 8(9):e74731. [6]Wanke M, Skorupinska-Tudek K, Swiezewska E. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate(DOXP/MEP)pathway[J]. Acta Biochimica Polonica-English Edition, 2001, 48(3):663-672.
[7]Kim KK, Sawa Y, Shibata H. Hydroxylation ofent-Kaurenoic Acid to Steviol in Stevia rebaudiana Bertoni—Purification and Partial Characterization of the Enzyme[J]. Archives of Biochemistry and Biophysics, 1996, 332(2):223-230. [8]Brandle JE, Telmer PG. Steviol glycoside biosynthesis[J]. Phytochemistry, 2007, 68(14):1855-1863. [9]Brandle JE, Richman A, Swanson AK, et al. Leaf ESTs from Stevia rebaudiana:a resource for gene discovery in diterpene synthesis[J]. Plant Mol Biol, 2002, 50(4-5):613-622.
[10]Richman A, Swanson A, Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[J]. The Plant Journal, 2005, 41(1):56-67. [11] Kishore GM, Motion M, Hicks PM, et al. Production of steviol glyc-osides in microorganisms:U. S, 13/701, 406[P]. 2011-6-2. [12] Humphrey TV, Richman AS, Menassa R, et al. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis[J]. Plant Mol Biol, 2006, 61(1-2):47-62. [13]Wang J, Li S, Xiong Z, et al. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli[J]. Cell Res, 2015, 26:258-261. [14]郭书巧, 束红梅, 郑卿, 等. 甜菊醇糖苷生物合成途径关键酶基因KA13H的克隆及序列分析[J]. 基因组学与应用生物学, 2010, 29(5):911-918. [15]胡秀英, 王仲伟, 黄苏珍. 甜菊糖苷含量跃变的理化特性分析[J]. 中国糖料, 2016, 38(4):19-23. [16]Collu G, Unver N, Peltenburg-Looman AMG, et al. Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis[J]. FEBS Lett, 2001, 2:215-220. [17]Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution[J]. Ann Rev Plant Biol, 2010, 61:291-315. [18]Durst F, Ο'Keefe DP. Plant cytochromes P450:an overview[J]. Drug Metabolism and Drug Interactions, 1995, 3-4:171-188. [19]余小林, 曹家树, 崔辉梅, 等. 植物细胞色素P450[J]. 中国细胞生物学学报, 2004, 26:561-566. [20]贺丽虹, 赵淑娟, 胡之璧. 植物色素P450基因与功能研究进展[J]. 药物生物技术, 2008, 15(2):142-147. [21] Fukushima EO, Seki H, Ohyama K, et al. CYP716A subfamily me-mbers are multifunctional oxidases in triterpenoid biosynthesis[J]. Plant and Cell Physiology, 2011, 52(12):2050-2061. |