[1] Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism[J]. Biochemical Journal, 2003, 376(1):1-14. [2] Nowotarski SL, Woster PM, Jr CR. Polyamines and cancer:implications for chemotherapy and chemoprevention[J]. Expert Reviews in Molecular Medicine, 2013, 15(3):139-147. [3] Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines[J]. Int J Biochem Cell Biol, 2010, 42(1):39-51. [4] Minois N, Carmonagutierrez D, Madeo F. Polyamines in aging and disease[J]. Aging, 2011, 3(8):716-732. [5] Moinard C, Cynober L, Bandt JPD. Polyamines:metabolism and implications in human diseases[J]. Clin Nutr, 2005, 2:184-197. [6] Gardner RA, Delcros JG, et al. N1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polya-mine transporters[J]. J Med Chem, 2004(24):6055-6069. [7] Wang C, Delcros JG, Biggerstaff J. Synthesis and biological evaluation of N1-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter[J]. Journal of Medicinal Chemistry, 2003, 46(13):2663-2671. [8] Jr CR, Marton LJ. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases[J]. Dressnature Reviews Drug Discovery, 2007, 6(5):373-390. [9] Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine-DNA interactions and development of gene delivery vehicles[J]. Amino Acids, 2016, 48(10):2423-2431. [10] Wallace HM, Fraser AV. Polyamine analogues as anticancer drugs[J]. Biochem Soc Trans, 2003, 31(2):393-396. [11] Silva TM, Fiuza SM, et al. Increased breast cancer cell toxicity by palladination of the polyamine analogue N 1, N 11-bis(ethyl)norspermine[J]. Amino Acids, 2014, 46(2):339-352. [12] Casero RA Jr, Woster PM. Recent advances in the development of polyamine analogues as antitumor agents[J]. Journal of Medicinal Chemistry, 2009, 52(15):4551-4573. [13] Casero RA Jr, Woster PM. Terminally alkylated polyamine analogues as chemotherapeutic agents[J]. Journal of Medicinal Chemistry, 2001, 44(1):1-26. [14] Valasinas A, Sarkar A, Reddy VK, et al. Conformationally restricted analogues of 1N, 14N-bisethylhomospermine(BE-4-4-4):synthesis and growth inhibitory effects on human prostate cancer cells[J]. J Med Chem, 2001, 44(3):390-403. [15] Mitchell JL, Leyser A, Holtorff MS, et al. Antizyme induction by polyamine analogues as a factor of cell growth inhibition[J]. Biochemical Journal, 2002, 366(2):663-671. [16] Huang Y, et al. Molecular mechanisms of polyamine analogs in cancer cells[J]. Anti-Cancer Drugs, 2005, 16(3):229-241. [17] Boncher T, Bi X, Varghese S, et al. Polyamine-based analogues as biochemical probes and potential therapeutics[J]. Biochemical Society Transactions, 2007, 35(2):356-363. [18] 罗稳, 李展, 翟洋洋, 等. 萘酰亚胺多胺衍生物的合成及其抗肿瘤活性[J]. 应用化学, 2013, 30(3):265-270. [19] 刘英杰, 等. 一种萘酰亚胺-多胺缀合物对人肝癌HepG2细胞的杀伤作用[J]. 中国药学杂志, 2016(3):207-212. [20] 田智勇, 苏雷朋, 谢松强, 等. 萘酰亚胺-多胺缀合物的合成、生物活性和荧光光谱[J]. 有机化学, 2013(7):1514-1521. [21] Rui T, Ghani RA, Phanstiel O, et al. Ant 4, 4, a polyamine-anthracene conjugate, induces cell death and recovery in human promyelogenous leukemia cells(HL-60)[J]. Amino Acids, 2013, 44(4):1193-1203. [22] Sarrazy V, Garcia G, et al. Photodynamic effects of porphyrin-polyamine conjugates in human breast cancer and keratinocyte cell lines[J]. J Photochem Photobiol B, 2011, 103(3):201-206. [23] Tomasi S, Renault J, Martin B, et al. Targeting the polyamine transport system with benzazepine- and azepine-polyamine conjugates[J]. J Med Chem, 2010, 53(21):7647-7663. [24] Mouawad F, Gros A, et al. The antitumor drug F14512 enhances cisplatin and ionizing radiation effects in head and neck squamous carcinoma cell lines[J]. Oral Oncol, 2014(2):113-119. [25] 许晓辉, 孙陶利, 许莉莉, 等. 鬼臼毒素类新药的研发思路[J]. 转化医学杂志, 2014, 3(3):162-165. [26] Thibault B, Clement E, Zorza G, et al. F14512, a polyamine-vector-ized inhibitor of topoisomerase II, exhibits a marked anti-tumor activity in ovarian cancer[J]. Cancer Lett, 2016(1):10-18. [27] Samorì C, et al. The role of polyamine architecture on the pharmacological activity of open lactone camptothecin-polyamine conjugates[J]. Bioconjug Chemi, 2008, 19(11):2270-2279. [28] Vijayanathan V, Agostinelli E, et al. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy[J]. Amino Acids, 2014, 46(3):499-509. [29] Thomas RM, Thomas T, Wada M, et al. Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues:structure-activity relationships[J]. Biochemistry, 1999, 38(40):13328-13337. [30] Nayvelt I, et al. DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage[J]. Biomacromolecules, 2010, 11(1):97-105. [31] Zhu Y, Li J, Kanvinde S, et al. Self-immolative polycations as gene delivery vectors and prodrugs targeting polyamine metabolism in cancer[J]. Molecular Pharmaceutics, 2014, 12(2):555-563. [32] Dewa T, Asai T, Tsunoda Y, et al. Liposomal polyamine-dialkyl phosphate conjugates as effective gene carriers:chemical structure, morphology, and gene transfer activity[J]. Bioconjugate Chemistry, 2010, 21(5):844-852. [33] Jiang H, Lim H, Kim Y, et al. Chitosan-graft-spermine as a gene carrier in vitro and in vivo[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(1):36-42. [34] Cui PF, Xing L, et al. Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer[J]. Int J Pharm, 2016, 506(1-2):79-86. [35] Sanyakamdhorn S, Chanphai P, et al. Encapsulation of biogenic and synthetic polyamines by nanoparticles PEG and mPEG-anthracene[J]. J Photochem Photobiol B, 2014, 130(1):30-39. [36] Mandeville JS, Bourassa P, Thomas TJ, et al. Biogenic and synthetic polyamines bind cationic dendrimers[J]. PLoS One, 2012, 7(4):2010-2026. [37] Chanphai P, Tajmir-Riahi HA. Thermodynamic analysis of biogenic and synthetic polyamines conjugation with PAMAM-G4 nanoparticles[J]. J Photochem Photobiol B, 2015, 155:13-19. |