Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (5): 40-49.doi: 10.13560/j.cnki.biotech.bull.1985.2017.05.006
Previous Articles Next Articles
QI Xin-jie1, WANG Yue1, 2, WANG Yan-sheng1, FANG Guo-kang1, HUANG Ying-chun1, 2
Received:
2016-11-07
Online:
2017-05-25
Published:
2017-05-19
QI Xin-jie, WANG Yue, WANG Yan-sheng, FANG Guo-kang, HUANG Ying-chun. Applications of Isothermal Titration Calorimetry in Protein-ligand Interactions[J]. Biotechnology Bulletin, 2017, 33(5): 40-49.
[1] Perozzo R, Folkers G, Scapozzaa L. Thermodynamics of protein-ligand interactions:history, presence, and future aspects[J]. J Recept Signal Transduct Res, 2004, 24(1-2):1-52. [2] Hansen LD, Fellingham GW, Russell DJ. Simultaneous determination of equilibrium constants and enthalpy changes by titration calorimetry:Methods, instruments, and uncertainties[J]. Anal Biochem, 2011, 409(2):220-229. [3] Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research—survey of the literature from 2010[J]. J Mol Recognit, 2012, 25(1):32-52. [4] Roselin LS, Lin MS, Lin PH, et al. Recent trends and some applications of isothermal titration calorimetry in biotechnology[J]. Biotechnol J, 2010, 5(1):85-98. [5] Liang Y. Applications of isothermal titration calorimetry in protein science[J]. Acta Biochim Biophys Sin(Shanghai), 2008, 40(7):565-576. [6] Myslinski JM, DeLorbe JE, Clements JH, et al. Protein-ligand interactions:thermodynamic effects associated with increasing nonpolar surface area[J]. J Am Chem Soc, 2011, 133(46):18518-18521. [7] Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry[J]. Biophys J, 1996, 71(4):2049-2055. [8] Connelly PR, Varadarajan R, Sturtevant JM, et al. Thermodynamics of protein-peptide interactions in the ribonuclease S system studied by titration calorimetry[J]. Biochemistry, 1990, 29(25):6108-6114. [9] Spolar RS, Record MT Jr. Coupling of local folding to site-specific binding of proteins to DNA[J]. Science, 1994, 263(5148):777-784. [10] Zhou YL, Liao JM, Chen J, et al. Macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase:implications for protein-protein interactions in intracellular environments[J]. Int J Biochem Cell Biol, 2006, 38(11):1986-1994. [11] Campagne S, Saurel O, Gervais V, et al. Structural determinants of specific DNA-recognition by the THAP zinc finger[J]. Nucleic Acids Res, 2010, 38(10):3466-3476. [12] Campagne S, Muller I, Milon A, et al. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1[J]. Nucleic Acids Res, 2012, 40(19):9927-9940. [13] Velazquez-Campoy A, Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands[J]. Nat Protoc, 2006, 1(1):186-191. [14] Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry[J]. J Mol Recognit, 2008, 21(1):1-19. [15] Falconer RJ, Penkova A, Jelesarovl I, et al. Survey of the year 2008:applications of isothermal titration calorimetry[J]. J Mol Recognit, 2010, 23(5):395-413. [16] Ross PD, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3102. [17] Furukawa A, Konuma T, Yanaka S, et al. Quantitative analysis of protein-ligand interactions by NMR[J]. Prog Nucl Magn Reson Spectrosc, 2016, 96(6):47-57. [18] Veliká B, Tomečková V, Fodor K, et al. (E)-2-Benzylidenecycloa-lkanones XII. * Kinetic measurement of bovine and human serum albumine interaction with selected chalcones and their cyclic chal-cone analogues by UV spectrophotometry[J]. Spectral Analysis Review, 2015, 3(1):1-8. [19] López-Lorente ÁI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis:potential and challenges[J]. Anal Bioanal Chem, 2016, 408(11):2875-2889. [20] Vachali PP, Li B, Bartschi A, et al. Surface plasmon resonance(SPR)-based biosensor technology for the quantitative characterization of protein-carotenoid interactions[J]. Arch Biochem Biophys, 2015, 572(15):66-72. [21] Schuck P. Analytical ultracentrifugation as a tool for studying protein interactions[J]. Biophys Rev, 2013, 5(2):159-171. [22] Smits AH, Vermeulen M. Characterizing protein-protein interactions using mass spectrometry:Challenges and opportunities[J]. Trends Biotechnol, 2016, 34(10):825-834. [23] Fernandes F, Coutinho A, Prieto M, et al. Electrostatically driven lipid-protein interaction:Answers from FRET[J]. Biochim Biophys Acta, 2015, 1848(9):1837-1848. [24] Vander Meulen KA, Saecker RM, Record MT Jr. Formation of a wrapped DNA-protein interface:experimental characterization and analysis of the large contributions of ions and water to the thermodynamics of binding IHF to H’ DNA[J]. J Mol Biol, 2008, 377(1):9-27. [25] Velázquez Campoy A, Freire E. ITC in the post-genomic era…? Priceless[J]. Biophys Chem, 2005, 115(2-3):115-124. [26] Bou-Abdallah F, Giffune TR. The thermodynamics of protein interactions with essential first row transition metals[J]. Biochim Biophys Acta, 2016, 1860(5):879-891. [27] Makowska J, Żamojć K, Wyrzykowski D, et al. Binding of Cu(II)ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2016, 153:451-456. [28] Irving H, Williams R. Order of stability of metal complexes[J]. Nature, 1948, 162(4123):746-747. [29] McCall KA, Fierke CA. Probing determinants of the metal ion selectivity in carbonic anhydrase using mutagenesis[J]. Biochemistry, 2004, 43(13):3979-3986. [30] Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1):1-37. [31] Rak J, Dejlová B, Lampová H, et al. On the solubility and lipophilicity of metallacarborane pharmacophores[J]. Mol Pharm, 2013, 10(5):1751-1759. [32] Barth RF, Coderre JA, Vicente MG, et al. Boron neutron capture therapy of cancer:current status and future prospects[J]. Clin Cancer Res, 2005, 11(11):3987-4002. [33] Hawthorne MF, Lee MW. A critical assessment of boron target compounds for boron neutron capture therapy[J]. J Neurooncol, 2003, 62(1-2):33-45. [34] Losytskyy MY, Kovalska VB, Varzatskii OA, et al. An interaction of the functionalized closo-borates with albumins:The protein fluorescence quenching and calorimetry study[J]. J Lumin, 2016, 169:51-60. [35] Zhang L, Wang Y, Li D, et al. The absorption, distribution, metabolism and excretion of procyanidins[J]. Food Funct, 2016, 7(3):1273-1281. [36] Barbehenn RV, Peter Constabel C. Tannins in plant-herbivore interactions[J]. Phytochemistry, 2011, 72(13):1551-1565. [37] Kilmister RL, Faulkner P, owney MO, et al. The complexity of condensed tannin binding to bovine serum albumin An isothermal titration calorimetry study[J]. Food Chem, 2016, 190:173-178. [38] Harbertson JF, Kilmister RL, Kelm MA, et al. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation[J]. Food Chem, 2014, 160:16-21. [39] 黄毅, 黄金花, 谢青季, 等. 糖-蛋白质相互作用[J]. 化学进 展, 2008, 98(6):942-950. [40] Disney MD, Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens[J]. Chem Biol, 2004, 11(12):1701-1707. [41] Patra D, Mishra P, Vijayan M, et al. Negative cooperativity and high affinity in chitooligosaccharide binding by a mycobacterium smegmatis protein containing LysM and lectin domains[J]. Biochemistry, 2016, 55(1):49-61. [42] Koharudin LM, Viscomi AR, Montanini B, et al. Structure-function analysis of a CVNH-LysM lectin expressed during plant infection by the rice blast fungus Magnaporthe oryzae[J]. Structure, 2011, 19(5):662-674. [43] Lecoq L, Bougault C, Hugonnet JE, et al. Dynamics induced by β-lactam antibiotics in the active site of Bacillus subtilis L, D-transpeptidase[J]. Structure, 2012, 20(5):850-861. [44] Liu T, Liu Z, Song C, et al. Chitin-induced dimerization activates a plant immune receptor[J]. Science, 2012, 336(6085):1160-1164. [45] Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, et al. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization[J]. Elife. 2013, 2:e00790. [46] Hadian M, Hashemhosseini SM, Farahnaky A, et al. Isothermal titration calorimetric and spectroscopic studies of β-lactoglobulin-water-soluble fraction of Persian gum interaction in aqueous solution[J]. Food Hydrocoll, 2016, 55:108-118. [47] Zhou J, Ralston J, Sedev R, et al. Functionalized gold nanoparticles:synthesis, structure and colloid stability[J]. J Colloid Interface Sci, 2009, 331(2):251-262. [48] Chatterjee T, Chakraborti S, Joshi P, et al. The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein[J]. FEBS J, 2010, 277(20):4184-4194. [49] Liu S, Han Y, Qiao R, et al. Investigations on the interactions between plasma proteins and magnetic iron oxide nanoparticles with different surface modifications[J]. J Phys Chem C, 2010, 114(49):21270-21276. [50] Chakraborti S, Joshi P, Chakravarty D, et al. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin[J]. Langmuir, 2012, 28(30):11142-11152. [51] Rabbani G, Khan MJ, Ahmad A, et al. Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase[J]. Colloids Surf B Biointerfaces, 2014, 123:96-105. [52] Lindman S, Lynch I, Thulin E, et al. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity[J]. Nano Lett, 2007, 7(4):914-920. [53] Baier G, Costa C, Zeller A, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake[J]. Macromol Biosci, 2011, 11(5):628-638. [54] Koppolu BP, Smith SG, Ravindranathan S, et al. Controlling chitosan-based encapsulation for protein and vaccine delivery[J]. Biomaterials, 2014, 35(14):4382-4389. [55] Winzen S, Schoettler S, Baier G, et al. Complementary analysis of the hard and soft protein corona:sample preparation critically effects corona composition[J]. Nanoscale, 2015, 7(7):2992-3001. [56] Gagner JE, Shrivastava S, Qian X, et al. Engineering nanomaterials for biomedical applications requires understanding the nano-bio interface:a perspective[J]. J Phys Chem Lett, 2012, 3(21):3149-3158. [57] Monopoli MP, Aberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials[J]. Nat Nanotechnol, 2012, 7(12):779-786. [58] Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7):543-557. [59] Shemetov AA, Nabiev I, Sukhanova A. Molecular Interaction of proteins and peptides with nanoparticles[J]. ACS Nano, 2012, 6(6):4585-4602. [60] De M, You CC, Srivastava S, et al. Biomimetic interactions of proteins with functionalized nanoparticles:a thermodynamic study[J]. J Am Chem Soc, 2007, 129(35):10747-10753. [61] Rajarathnam K, Rösgen J. Isothermal titration calorimetry of membrane proteins - progress and challenges[J]. Biochim Biophys Acta, 2014, 1838(1):69-77. [62] Reyes N, Oh S, Boudker O. Binding thermodynamics of a glutamate transporter homolog[J]. Nat Struct Mol Biol, 2013, 20(5):634-640. [63] Chavan H, Li F, Tessman R, et al. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver[J]. J Biol Chem, 2015, 290(12):7871-7886. [64] Boudker O, Oh S. Isothermal titration calorimetry of ion-coupled membrane transporters[J]. Methods, 2015, 76:171-182. [65] Langelaan DN, Ngweniform P, Rainey JK. Biophysical characterization of G-protein coupled receptor-peptide ligand binding[J]. Biochem Cell Biol, 2011, 89(2):98-105. [66] Finger S, Kerth A, Dathe M, et al. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity[J]. Biochim Biophys Acta, 2015, 1848(11):2998-3006. [67] Pozzi N, Chen R, Chen Z, et al. Rigidification of the autolysis loop enhances Na + binding to thrombin[J]. Biophys Chem, 2011, 159(1):6-13. [68] Sotoft LF, Westh P, Christensen KV, et al. Novel investigation of enzymatic biodiesel reaction by isothermal calorimetry[J]. Thermochim Acta, 2010, 501(1-2):84-90. [69] Brogan AP, Widger WR, Bensadek D, et al. Development of a technique to determine bicyclomycinrho binding and stoichiometry by isothermal titration calorimetry and mass spectrometry[J]. J Am Chem Soc, 2005, 127(8):2741-2751. [70] Lei H, Liu J, Song L, et al. Development of a highly sensitive and specific immunoassay for determining chrysoidine, a banned dye, in soybean milk film[J]. Molecules, 2011, 16(12):7043-7057. [71] Gui WJ, Xu Y, Shou LF, et al. Liquid chromatography-tandem mass spectrometry for the determination of chrysoidine in yellow-fin tuna[J]. Food Chem, 2010, 122(4):1230-1234. [72] Yang BJ, Hao F, Li JR, et al. Characterization of the binding of chrysoidine, an illegal food additive to bovine serum albumin[J]. Food Chem Toxicol, 2014, 65:227-232. [73] Sun H, Liu Y, Li M, et al. Toxic effects of chrysoidine on human serum albumin:isothermal titration calorimetry and spectroscopic investigations[J]. Luminescence, 2016, 31(2):335-340. [74] Bradrick TD, Beechem JM, Howell EE. Unusual binding stoichiometries and cooperativity are observed during binary and ternary complex formation in the single active pore of R67 dihydrofolate reductase, a D2 symmetric protein[J]. Biochemistry, 1996, 35(35):11414-11424. [75] Rehman AA, Ahsan H, Khan FH. Identification of a new alpha-2-macroglobulin:Multi-spectroscopic and isothermal titration calorimetry study[J]. Int J Biol Macromol, 2016, 83:366-375. |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[3] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[4] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[5] | QIAN Bang, LIU Zhen-dong, ZHAO Yin, LI Jing, PRAJAPATI Meera, LI Yan-min, SUN Yue-feng, DOU Yong-xi. Establishment of Chemiluminescence Immunoassay for the Detection of Peste des Petits Ruminants Virus H Protein Antibodies [J]. Biotechnology Bulletin, 2023, 39(5): 120-129. |
[6] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[7] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[8] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[9] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[10] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[11] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[12] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[13] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[14] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[15] | SA Shi-juan, WU Han-yu, WEN Yuan, CHEN Xue-na, ZHENG Rui, YAO Xin-ling. Responses of Choloroplast Specific Protein Profile to Different Stomatal Densities in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2023, 39(2): 193-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||