Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (7): 15-21.doi: 10.13560/J.cnki.biotech.bull.1985.2017-0099
• CONTENTS • Previous Articles Next Articles
JIANG Min, LI Wei, DONG Zheng ,LI Li-hua ,DAI Liang-ying
Received:
2017-02-17
Online:
2017-07-11
Published:
2017-07-11
JIANG Min, LI Wei, DONG Zheng ,LI Li-hua ,DAI Liang-ying. Recent Advances on the Regulation of Phytochrome in Plant Defense Resistance[J]. Biotechnology Bulletin, 2017, 33(7): 15-21.
[1] Wu L, Yang HQ. Cryptochrome1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis[J] . Molecular Plant, 2010, 3(3):539-548. [2] Wang H, Wang H. Phytochrome signaling:Time to tighten up the loose ends[J] . Molecular Plant, 2015, 8(4):540-551. [3] Wang Y, Maruhnich SA, Mageroy MH, et al. Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths[J] . Planta, 2013, 237(1):225-237. [4] Sullivan JA, Deng XW. From seed to seed:the role of photorecep-tors in Arabidopsis development[J] . Developmental Biology, 2003, 260(2):289-297. [5] Karniol B, Wagner JR, Walker JM, et al. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors[J] . Biochemical J, 2005, 392(1):103-116. [6] Mathews S, Burleigh JG, Donoghue MJ. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms[J] . Molcular Biology, 2003, 20(7):1087-1097. [7] Ulijasz AT, Cornilescu G, Cornilescu CC, et al. Structural basis for the photoconversion of a phytochrome to the activated Pfr form[J] . Nature, 2010, 463(7278):250-254. [8] 王静, 王艇. 高等植物光敏色素的分子结构、生理功能和进化特征[J] . 植物学报, 2007, 24(5):649-658. [9] 杨玉珍, 袁秀云. 光敏色素分子及其信号转导途径[J] . 植物学通报, 2005, 16(5):586-588. [10] 岳晶, 管利萍, 孟思远, 等. 光敏色素信号通路中磷酸化修饰研究进展[J] . 植物学报, 2015, 50(2):241-254. [11] Clack T, Shokry A, Moffet M, et al. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor[J] . Plant Cell, 2009, 21(3):786-799. [12] Xie XZ, Xue YJ, Zhou JJ, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J] . Molecular Plant, 2011, 4(4):688-696. [13] Kazan K, Manners JM. The interplay between light and jasmonate signalling during defence and development[J] . Journal of Experimental Botany, 2011, 62(12):4087-4100. [14] Griebel T, Zeier J. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis:phytochrome signaling controls systemic acquired resistance rather than local defense[J] . Plant Physiology, 2008, 147(2):790-801. [15] Wang W, Tang W, Ma T, et al. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis[J] . Journal of Integrative Plant Biology, 2016, 58(1):91-103. [16] Kidd BN, Edgar CI, Kumar KK, et al. The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis[J] . Plant Cell, 2009, 21(8):2237-2252. [17] I?igo S1, Alvarez MJ, Strasser B, et al. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis[J] . Plant J, 2012, 69(4):601-612. [18] Kumar SV, Lucyshyn D, Jaeger KE, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J] . Nature, 2012, 484(7393):242-245. [19] Gangappa SN, Berriri S, Kumar SV. PIF4 coordinates thermosen-sory growth and immunity in Arabidopsis[J] . Current Biology, 2017, 27(2):243-249. [20] Wang H, Jiang YP, Yu HJ, et al. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants[J] . European Journal of Plant Pathology, 2010, 127(1):125-135. [21] Yang YX, Wang MM, Yin YL, et al. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants[J]. BMC Genomics, 2015, 16(1):1-16. [22]Ballaré CL. Illuminated behaviour:phytochrome as a key regulator of light foraging and plant anti-herbivore defence[J]. Plant Cell Environment, 2009, 32(6):713-725. [23]Izaguirre MM, Mazza CA, Biondini M, et al. Remote sensing of future competitors:impacts on plant defenses[J]. Proceedings of the National Academy of Sciences of United States of America, 2006, 103:7170-7174. [24]Campos ML, Yoshida Y, Major IT, et al. Rewiring of jasmonate and phytochrome B signaling uncouples plant growth-defense tradeoffs[J]. Nature Communications, 2016, 7:12570. [25]Zhai Q, Li CB, Zheng W, et al. Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis[J]. Plant Cell Physiology, 2007, 48(7):1061-1071. [26]Moreno JE, Tao Y, Chory J, et al. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity[J]. Proceedings of the National Academy of Sciences of United States of America, 2009, 106(12):4935-4940. [27]杨有新, 王峰, 蔡加星, 等. 光质和光敏色素在植物逆境响应中的作用研究进展[J]. 园艺学报, 2014, 41(9):1861-1872. [28]Ballaré CL. Light regulation of plant defense[J]. Annual Review of Plant Biology, 2014, 65(1):335-363. [29]Roig-Villanova I, Martínez-García JF. Plant responses to vegetation proximity:A whole liife avoiding shade[J]. Frontiers in Plant Science, 2016, 7:236. [30]周峰. 植物防御反应及其光信号调控途径[J]. 北方园艺, 2015, 17:179-182. [31]Martínez-García JF, Gallemí M, Molina-Contreras MJ, et al. The shade avoidance syndrome in Arabidopsis:the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade[J]. PLoS One, 2014, 9(10):e109275. [32] Franklin KA. Shade avoidance[J]. New Phytologist, 2008, 179(4):930-944. [33]Martinez-Garcia JF, Galstyan A, Salla-Martret M, et al. Regulatory components of shade avoidance syndrome[J]. Advances in Botanical Research, 2010, 53:65-116. [34]Roig-Villanova I, Bou-Torrent J, Galstyan A, et al. Interaction of shade avoidance and auxin responses:A role for two novel atypical bHLH proteins[J]. EMBO J, 2007, 26(22):4756-4767. [35]Hornitschek P, Kohnen MV, Lorrain S, et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling[J]. The Plant Journal:for Cell and Molecular Biology, 2012, 71(5):699-711. [36]Hornitschek P, Lorrain S, Zoete V, et al. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers[J]. The EMBO Journal, 2009, 28(24):3893-3902. [37]Hao Y, Oh E, Choi G, et al. Interactions between HLH and bHLH factors modulate light-regulated plant development[J]. Molecular Plant, 2012, 5(3):688-697. [38]Rolauffs S, Fackendahl P, Sahm J, et al. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio[J]. Plant Physiology, 2012, 160(4):2015-2027. [39]Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice[J]. Plant Molecular Biology, 2012, 78(3):289-300. [40] Wang FF, Lian HL, Kang CY, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana[J]. Molecular Plant, 2010, 3(1):246-259. [41]Casson SA, Hetherington AM. Phytochrome B is required for light-mediated systemic control of stomatal development[J]. Current Biology, 2014, 24(11):1216-1221. [42]Boccalandro HE, Rugnone ML, Moreno JE, et al. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis[J]. Plant Physiology, 2009, 150(2):1083-1092. [43]González CV, Ibarra SE, Piccoli PN, et al. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana[J]. Plant Cell Environment, 2012, 35(11):1958-1968. [44]Boggs JZ, Loewy K, Bibee K, et al. Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana[J]. Plant Growth Regulation, 2010, 60(3):77-81. [45]Shamim Z, Rashid B, Rahman S, et al. Expression of drought tolerance in transgenic cotton[J]. Scienceasia, 2013, 39(1):1-11. [46]Kim HJ, Kim YK, Park JY, et al. Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element(C/DRE)in Arabidopsis thaliana[J]. The Plant Journal:for Cell and Molecular Biology, 2002, 29(6):693-704. [47]He YN, Li YP, Cui LX, et al. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice[J]. Frontiers in Plant Science, 2016, 7:1963. [48]Franklin KA, Whitelam GC. Light-quality regulation of freezing tolerance in Arabidopsis thaliana[J]. Nature Genetics, 2007, 39(11):1410-1413. [49]Badawi M, Reddy YV, Agharbaoui Z, et al. Structure and functional analysis of wheat ICE(inducer of CBF expression)genes[J]. Plant Cell Physiology, 2008, 49(8):1237-1249. [50]Lee CM, Thomashow MF. Photoperiodic regulation of the C-repeat binding factor(CBF)cold acclimation pathway and freezing tolerance in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of United States of America, 2012, 109(37):15054-15063. [51]Crawford AJ, McLachlan DH, Hetherington AM, et al. High temperature exposure increases plant cooling capacity[J]. Current Biology, 2012, 22(10):396-397. [52]Franklin KA, Lee SH, Patel D, et al. Phytochrome-interacting factor 4(PIF4)regulates auxin biosynthesis at high temperature[J]. Proceedings of the National Academy of Sciences of United States of America, 2011, 108(50):20231-20235. [53]Press MO, Lanctot A, Queitsch C. PIF4 and ELF3 act independently in Arabidopsis thaliana thermoresponsive flowering[J]. PLoS One, 2016, 11(8):e0161791. [54]Foreman J, Johansson H, Hornitschek P, et al. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures[J]. The Plant Journal, 2011, 65(3):441-452. [55]Ma D, Li X, Guo Y, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proceedings of the National Academy of Sciences of United States of America, 2016, 113(1):224-229. [56]Box MS, Huang BE, Domijan M, et al. ELF3 controls thermoresponsive growth in Arabidopsis[J]. Current Biology, 2015, 25(2):194-199. [57]Nieto C, López-Salmerón V, Davière JM, et al. ELF3-PIF4 interaction regulates plant growth independently of the evening complex[J]. Current Biology, 2015, 25(2):187-193. |
[1] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[4] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[5] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[6] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[7] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[8] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[9] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[10] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[11] | GE Wen-dong, WANG Teng-hui, MA Tian-yi, FAN Zhen-yu, WANG Yu-shu. Genome-wide Identification of the PRX Gene Family in Cabbage(Brassica oleracea L. var. capitata)and Expression Analysis Under Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 252-260. |
[12] | YANG Xu-yan, ZHAO Shuang, MA Tian-yi, BAI Yu, WANG Yu-shu. Cloning of Three Cabbage WRKY Genes and Their Expressions in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 261-269. |
[13] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[14] | YU Hui-lin, WU Kong-ming. Commercialization Strategy of Transgenic Soybean in China [J]. Biotechnology Bulletin, 2023, 39(1): 1-15. |
[15] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||