Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (7): 7-14.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0018
• CONTENTS • Previous Articles Next Articles
LI Xia, WANG Shun-li
Received:
2017-01-17
Online:
2017-07-11
Published:
2017-07-11
LI Xia, WANG Shun-li. Research Advances of Transcriptomics in Horticulture Plants Pigments Metabolism[J]. Biotechnology Bulletin, 2017, 33(7): 7-14.
[1] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids[J] . The Plant Journal, 2008, 54(4):733-749. [2] Liu L, Shao Z, Zhang M, et al. Regulation of carotenoid metabolism in tomato[J] . Molecular Plant, 2015, 8:28-39. [3] 高慧君, 明家琪, 张雅娟, 等. 园艺植物中类胡萝卜素合成与调控的研究进展. 园艺学报[J] . 2015, 42:1633-1648. [4] Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J] . Trends in Plant Science, 2013, 18(9):477-483. [5] Li W, Liu Y, Zeng S, et al. Gene expression profiling of development and anthocyanin accumulation in kiwifruit(Actinidia chinensis)based on transcriptome sequencing[J] . PLoS One, 2015, 10(8):e0136439. [6] Liu Y, Zeng S, Sun W, et al. Comparative analysis of carotenoid accumulation in two goji(Lycium barbarum L. and L. ruthenicum Murr.)fruits[J] . BMC Plant Biology, 2014, 14(1):269. [7] Ma J, Li J, Zhao J, et al. Inactivation of a gene encoding carotenoid cleavage dioxygenase(CCD4)leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach[J] . Plant Molecular Biology Reporter, 2014, 32(1):246-257. [8] Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage Dioxygenase(CmCCD4a)contributes to white color formation in chrysanthemum petals[J] . Plant Physiology, 2006, 142:1193-1201. [9] Zhang B, Liu C, Wang YQ, et al. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species[J] . New Phytologist, 2015, 206(4):1513-1526. [10] Ahn JH, Kim JS, Kim S, et al. De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in zoysiagrass(Zoysia japonica Steud.)[J] . PLoS One, 2015, 10(4):e0124497. [11] Liu Y, Linwang K, Deng C, et al. Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis[J] . PLoS One, 2015, 10(6):e0129148. [12] Fukushima A, Nakamura M, Suzuki H, et al. High-throughput sequencing and de novo assembly of red and green forms of the Perilla frutescens var. crispa transcriptome[J] . PLoS One, 2015, 10(6):e0129154. [13] Hong Y, Tang X, Huang H, et al. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum[J] . BMC Genomics, 2015, 16(1):1-18. [14] Wu ZG, Jiang W, Mantri N, et al. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam(Dioscorea alata L.)tubers[J] . BMC Genomics, 2015, 16(1):346. [15] Casimiro-Soriguer I, Narbona E, Buide M, et al. Transcriptome and biochemical analysis of a flower color polymorphism in Silene littorea(Caryophyllaceae)[J] . Frontiers in PlantScience, 2016, 7(939):204. [16] Mushtaq MA, Pan Q, Chen D, et al. Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in brassica:molecular regulation and potential interaction with photosynthesis[J] . Frontiers in Plant Science, 2016, 7:311. [17] Lou Q, Liu Y, Qi Y, et al. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth[J] . Journal of Experimental Botany, 2014, 65(12):3157-3164. [18] Jin X, Huang H, Wang L, et al. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different senecio cruentus cultivars[J] . Frontiers in Plant Science, 2016, 7(107):1307. [19] 宿福园, 姚延兴, 李长林, 等. 中国园艺学会2015年学术年会论文摘要集:黑柿花青苷累积的转录组和表达谱分析[C] . 北京:中国林业出版社, 2015. [20] Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies(Lilium spp.)[J] . New Phytologist, 2014, 201(3):1009-1020. [21] Yuan YW, Sagawa JM, Frost L, et al. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers(Mimulus)[J] . New Phytologist, 2014, 204(4):1013-1027. [22] Lee JM, Joung JG, Mcquinn R, et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation[J] . Plant Journal, 2012, 70(2):191-204. [23] Bashandy H, Pieti?inen M, Carvalho E, et al. Anthocyanin biosynthesis in gerbera cultivar ‘Estelle’ and its acyanic sport ‘Ivory’[J] . Planta, 2015, 242(3):601-611. [24] EI-Sharkawy I, Liang D, Xu K. Transcriptome analysis of an apple(Malus×domestica)yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation[J] . Journal of Experimental Botany, 2015, 47 Suppl 1(22):218-225. [25] Xu Y, Feng S, Jiao Q, et al. Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport. [J] . Euphytica, 2012, 185(2):157-170. [26] Saminathan T, Bodunrin A, Singh NV. Genome-wide identification of microRNAs in pomegranate(Punica granatum L.)by high-throughput sequencing[J] . BMC Plant Biology, 2016, 16(1):1-16. [27] Xu Q, Liu Y, Zhu A, et al. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type[J] . BMC Genomics, 2010, 11(1):1-17. [28] Tzuri G, Zhou X, Chayut N, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon(Cucumis melo)[J] . Plant Journal for Cell & Molecular Biology, 2015, 82(2):267-279. [29] Sagawa JM, Stanley LE, Lafountain AM, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers[J] . New Phytologist, 2016, 209(3):1049-1057. [30] Zhou Y, Zhou H, Linwang K, et al. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach[J] . BMC Plant Biology, 2014, 14(1):1-13. [31] Zhou H, Linwang K, Wang H, et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J] . Plant Journal, 2015, 82(1):105-121. [32] 朱满兰, 王亮生, 张会金, 等. 耐寒睡莲花瓣中花青素苷组成及其与花色的关系[J] . 植物学报, 2012, 47(5):437-453. [33] Wu Q, Wu J, Li SS, et al. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily[J] . BMC Genomics, 2016, 17(1):897. [34] Weiss D. Regulation of flower pigmentation and growth:Multiple signaling pathways control anthocyanin synthesis in expanding petals[J] . Physiologia Plantarum, 2000, 110(2):152-157. [35] 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理[J] . 植物学报, 2010, 45(3):307-317. [36] Zhang HN, Li WC, Wang HC, et al. Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of litchi[J] . Frontiers in Plant Science, 2016, 07(225). [37] Wu BH, Cao YG, Guan L, et al. Genome-wide transcriptional profiles of the berry skin of two red grape cultivars(Vitis vinifera)in which anthocyanin synthesis is sunlight-dependent or -independent[J] . PLoS One, 2014, 9(9):e105959. [38] Li P, Li YJ, Zhang FJ, et al. The Arabidopsis UDP-glycosyltransfe-rases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J] . The Plant Journal, 2017, 89(1):85-103. [39] Qiu Z, Wang X, Gao J, et al. The tomato hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J] . PLoS One, 2016, 11(3):e0151067. [40] Movahed N, Pastore C, Cellini A, et al. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature[J] . Journal of Plant Research, 2016, 129(3):513-526. [41] Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J] . New Phytologist, 2008, 179(4):1004-1016. [42] Ji XH, Zhang R, Wang N, et al. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus(Malus sieversii f. niedzwetzkyana)[J] . Plant Cell, Tissue and Organ Culture(PCTOC), 2015, 123(2):389-404. [43] Ito S, Nozoye T, Sasaki E, et al. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in arabidopsis[J] . PLoS One, 2015, 10 (3):e0119724. [44] Hsieh L-C, Lin S-I, Shih AC-C, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4):2120-2132. [45] Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends in Genetics, 2008, 24(3):133-141. [46] 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8):688-699. [47] Craig DW, Pearson JV, Szelinger S, et al. Identification of genetic variants using bar-coded multiplexed sequencing[J]. Nature Methods, 2008, 5(10):887-893. [48] Ming R, Vanburen R, Wai CM, et al. The pineapple genome and the evolution of CAM photosynthesis[J]. Nature Genetics, 2015, 47(12):1435-1442. [49] Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L.[J]. Nature Genetics, 2009, 41(12):1275-1281. [50] Bolger A, Scossa F, Bolger ME, et al. The genome of the stress-tolerant wild tomato species Solanum pennellii[J]. Nature Genetics, 2014, 46(9):1034-1038. [51] Zhang Q, Chen W, Sun L, et al. The genome of Prunus mume[J]. Nature Communications, 2011, 3(4):187-190. [52] Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple(Malus × domestica Borkh.)[J]. Nature Genetics, 2010, 42(10):833-839. [53] Qi JJ, Liu X, Shen D, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity[J]. Nature Genetics, 2013, 45(12):1510-1515. [54] Lin T, Zhu G, Zhang J, et al. Genomic analyses provide insights into the history of tomato breeding[J]. Nature Genetics, 2014, 46(11):1220-1226. [55] Iorizzo M, Ellison S, Senalik D, et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution[J]. Nature Genetics, 2016, 48(6):657. |
[1] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[2] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[3] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[6] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[7] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[8] | XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica [J]. Biotechnology Bulletin, 2023, 39(11): 238-251. |
[9] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[10] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
[11] | GUO Zhi-hao, JIN Ze-xin, LIU Qi, GAO Li. Bioinformatics Analysis, Subcellular Localization and Toxicity Verification of Effector g11335 in Tilletia contraversa Kühn [J]. Biotechnology Bulletin, 2022, 38(8): 110-117. |
[12] | YU Qiu-lin, MA Jing-yi, ZHAO Pan, SUN Peng-fang, HE Yu-mei, LIU Shi-biao, GUO Hui-hong. Cloning and Functional Analysis of Gynostemma pentaphyllum GpMIR156a and GpMIR166b [J]. Biotechnology Bulletin, 2022, 38(7): 186-193. |
[13] | CHEN Jia-min, LIU Yong-jie, MA Jin-xiu, LI Dan, GONG Jie, ZHAO Chang-ping, GENG Hong-wei, GAO Shi-qing. Expression Pattern Analysis of Histone Methyltransferase Under Drought Stress in Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(7): 51-61. |
[14] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[15] | WANG Nan, ZHANG Rui, PAN Yang-yang, HE Hong-hong, WANG Jing-lei, CUI Yan, YU Si-jiu. Cloning of Bos grunniens TGF-β1 Gene and Its Expression in Major Organs of Female Reproductive System [J]. Biotechnology Bulletin, 2022, 38(6): 279-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||