Biotechnology Bulletin ›› 2017, Vol. 33 ›› Issue (9): 32-47.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0401
• CONTENTS • Previous Articles Next Articles
WANG Fei,YANG Hai-tao,WANG Ze-fang
Received:
2017-05-25
Online:
2017-09-01
Published:
2017-09-15
WANG Fei,YANG Hai-tao,WANG Ze-fang. Research Progress on Red Fluorescent Protein[J]. Biotechnology Bulletin, 2017, 33(9): 32-47.
[1] Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein[J] . Gene, 1992, 111(2):229-233. [2] Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J] . Nat Biotechnol, 1999, 17(10):969-973. [3] Strack RL, Strongin DE, Bhattacharyya D, et al. A non-cytotoxic DsRed variant for whole-cell labeling[J] . Nature Methods, 2008, 5(11):955-957. [4] Tao W, Evans B, Yao J, et al. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not[J] . Stem Cells, 2007, 25(3):670-678. [5] Yang F, Moss LG, Phillips GN Jr. The molecular structure of green fluorescent protein[J] . Nat Biotechnol, 1996, 14(10):1246-1251. [6] Orm? M, Cubitt AB, Kallio K, et al. Crystal structure of the green fluorescent protein[J] . Science, 1996, 273(5280):1392-1395. [7] Subach OM, Patterson GH, Ting L, et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange[J] . Nature Methods, 2011, 8(9):771-777. [8] Ehrenberg M, 罗文新, 夏宁邵. 绿色荧光蛋白——发现、表达和发展[J] . 生物物理学报, 2008(6):422-429. [9] Park N, Song J, Jeong S, et al. Vaccinia-related kinase 3(VRK3)sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells[J] . Biochemical and Biophysical Research Communications, 2017, 487(2):320-326. [10] Zhao D, Xue C, Lin S, et al. Notch signaling pathway regulates angiogenesis via endothelial cell in 3D Co-culture model[J] . Journal of Cellular Physiology, 2017, 232(6):1548-1558. [11] Wachter RM, Watkins JL, Kim H. Mechanistic diversity of red fluorescence acquisition by GFP-like proteins[J] . Biochemistry, 2010, 49(35):7417-7427. [12] Strack RL, Bhattacharyya D, Glick BS, et al. Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling[J] . BMC Biotechnology, 2009, 9:32. [13] Dash AK, Yende AS, Tyagi RK. Novel Application of red fluorescent protein(DsRed-Express)for the study of functional dynamics of nuclear receptors[J] . Journal of Fluorescence, 2017:1-7. [14] Shaner NC, Lin MZ, Mckeown MR, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins[J] . Nature Methods, 2008, 5(6):545-551. [15] Merzlyak EM, Goedhart J, Shcherbo D, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime[J] . Nat Methods, 2007, 4(7):555-557. [16] Sakaue-Sawano A, Kurokawa H, Morimura T, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression[J] . Cell, 2008, 132(3):487-498. [17] Tsutsui H, Karasawa S, Okamura Y, et al. Improving membrane voltage measurements using FRET with new fluorescent proteins[J] . Nat Methods, 2008, 5(8):683-685. [18] Bindels DS, Haarbosch L, van Weeren L, et al. mScarlet:a bright monomeric red fluorescent protein for cellular imaging[J] . Nat Methods, 2017, 14(1):53-56. [19] Pandelieva AT, Baran MJ, Calderini GF, et al. Brighter red fluorescent proteins by rational design of triple-decker motif[J] . ACS Chemical Biology, 2016, 11(2):508-517. [20] Fan Y, Ai H. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments[J] . Analytical and Bioanalytical Chemistry, 2016, 408(11):2901-2911. [21] Shaner NC, Campbell RE, Steinbach PA, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J] . Nat Biotechnol, 2004, 22(12):1567-1572. [22] Wannier TM, Moore MM, Mou Y, et al. Computational design of the β-sheet surface of a red fluorescent protein allows control of protein oligomerization[J] . PLoS One, 2015, 10(6):e130582. [23] Hasegawa J, Ise T, Fujimoto KJ, et al. Excited States of fluorescent proteins, mKO and DsRed:chromophore-protein electrostatic interaction behind the color variations[J] . The Journal of Physical Chemistry B, 2010, 114(8):2971-2979. [24] Bravaya KB, Grigorenko BL, Nemukhin AV, et al. Quantum chemistry behind bioimaging:insights from Ab initio studies of fluorescent proteins and their chromophores[J] . Accounts of Chemical Research, 2012, 45(2):265-275. [25] Ikmi A, Gibson MC. Identification and in vivo characterization of NvFP-7R, a developmentally regulated red fluorescent protein of Nematostella vectensis[J] . PLoS One, 2010, 5(7):e11807. [26] Shcherbo D, Murphy CS, Ermakova GV, et al. Far-red fluorescent tags for protein imaging in living tissues[J] . The Biochemical Journal, 2009, 418(3):567-574. [27] Kredel S, Nienhaus K, Oswald F, et al. Optimized and far-red-emitting variants of fluorescent protein eqFP611[J] . Chemistry & Biology, 2008, 15(3):224-233. [28] Chica RA, Moore MM, Allen BD, et al. Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries[J] . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47):20257-20262. [29] Shkrob MA, Yanushevich YG, Chudakov DM, et al. Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina[J] . Biochemical Journal, 2005, 392(Pt 3):649-654. [30] Wannier TM, Mayo SL. The structure of a far-red fluorescent protein, AQ143, shows evidence in support of reported red-shifting chromophore interactions[J] . Protein Science:A Publication of the Protein Society, 2014, 23(8):1148-1153. [31] Mcisaac RS, Engqvist MKM, Wannier T, et al. Directed evolution of a far-red fluorescent rhodopsin[J] . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36):13034-13039. [32] Konold PE, Yoon E, Lee J, et al. Fluorescence from multiple chromophore hydrogen-bonding states in the far-red protein TagRFP675[J] . The Journal of Physical Chemistry Letters, 2016, 7(15):3046-3051. [33] Hense A, Prunsche B, Gao P, et al. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging[J] . Scientific Reports, 2015, 5:18006. [34] Yu D, Dong Z, Gustafson WC, et al. Rational design of a monomeric and photostable far‐red fluorescent protein for fluorescence imaging in vivo[J] . Protein Science:A Publication of the Protein Society, 2015, 25(2):308-315. [35] Bajar BT, Lam AJ, Badiee RK, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases[J] . Nat Methods, 2016, 13(12):993-996. [36] Li Z, Zhang Z, Bi L, et al. Mutagenesis of mNeptune red-shifts emission spectrum to 681-685 nm[J] . PLoS One, 2016, 11(4):e148749. [37] Ren H, Yang B, Ma C, et al. Cysteine sulfoxidation increases the photostability of red fluorescent proteins[J] . ACS Chemical Biology, 2016, 11(10):2679-2684. [38] Shcherbo D, Merzlyak EM, Chepurnykh TV, et al. Bright far-red fluorescent protein for whole-body imaging[J] . Nat Methods, 2007, 4(9):741-746. [39] Shcherbo D, Shemiakina II, Ryabova AV, et al. Near-infrared fluorescent proteins[J] . Nature Methods, 2010, 7(10):827-829. [40] Armengol P, Gelabert R, Moreno M, et al. Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins[J] . Physical Chemistry Chemical Physics, 2016, 18(25):16964-16976. [41] Shu X, Royant A, Lin MZ, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome[J] . Science(New York, N. Y. ), 2009, 324(5928):804-807. [42] Filonov GS, Piatkevich KD, Ting L, et al. Bright and stable near infra-red fluorescent protein for in vivo imaging[J] . Nature Biotechnology, 2011, 29(8):757-761. [43] Lin L, Wang B, Chen J, et al. mPlum-IFP 1. 4 fluorescent fusion protein may display F?rster resonance energy transfer associated properties that can be used for near-infrared based reporter gene imaging[J] . Journal of Biomedical Optics, 2013, 18(12):126013. [44] Bajar BT, Wang ES, Zhang S, et al. A guide to fluorescent protein FRET pairs[J] . Sensors(Basel, Switzerland), 2016, 16(9):1488. [45] Moore MM, Oteng-Pabi SK, Pandelieva AT, et al. Recovery of red fluorescent protein chromophore maturation deficiency through rational design[J] . PLoS One, 2012, 7(12):e52463. [46] Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling[J] . Molecular Cell, 2007, 26(1):1-14. [47] Kumagai A, Ando R, Miyatake H, et al. A bilirubin-inducible fluorescent protein from eel muscle[J] . Cell, 2013, 153(7):1602-1611. [48] Rodriguez EA, Tran GN, Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein[J] . Nature Methods, 2016, 13(9):763-769. [49] Ai H, Hazelwood KL, Davidson MW, et al. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors[J] . 2008, 5(5):401-403. [50] Shcherbakova DM, Hink MA, Joosen L, et al. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging[J] . Journal of the American Chemical Society, 2012, 134(18):7913-7923. [51] Kogure T, Karasawa S, Araki T, et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy[J] . Nat Biotechnol, 2006, 24(5):577-581. [52] Piatkevich KD, Hulit J, Subach OM, et al. Monomeric red fluorescent proteins with a large Stokes shift[J] . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12):5369-5374. [53] Kennis JTM, van Stokkum IHM, Peterson DS, et al. Ultrafast proton shuttling in psammocora cyan fluorescent protein[J] . The Journal of Physical Chemistry B, 2013, 117(38):11134-11143. [54] Fron E, De Keersmaecker H, Rocha S, et al. Mechanism behind the apparent large stokes shift in lssmorange investigated by time-resolved spectroscopy[J] . The Journal of Physical Chemistry B, 2015, 119(47):14880-14891. [55] Piatkevich KD, Malashkevich VN, Almo SC, et al. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift[J] . Journal of the American Chemical Society, 2010, 132(31):10762-10770. [56] Guan Y, Meurer M, Raghavan S, et al. Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein[J] . Molecular Biology of the Cell, 2014, 26(11):2054-2066. [57] Piatkevich KD, English BP, Malashkevich VN, et al. Photoswitchable red fluorescent protein with a large Stokes shift[J] . Chemistry & Biology, 2014, 21(10):1402-1414. [58] Yang J, Wang L, Yang F, et al. mBeRFP, an improved large stokes shift red fluorescent protein[J] . PLoS One, 2013, 8(6):e64849. [59] Pletnev S, Shcherbakova DM, Subach OM, et al. Orange fluorescent proteins:structural studies of LSSmOrange, PSmOrange and PSmOrange2[J] . PLoS One, 2014, 9(6):e99136. [60] Bacia K, Kim SA, Schwille P. Fluorescence cross-correlation spectroscopy in living cells[J] . Nat Methods, 2006, 3(2):83-89. [61] Lindenburg LH, Malisauskas M, Sips T, et al. Quantifying stickiness:thermodynamic characterization of intramolecular domain interactions to guide the design of f?rster resonance energy transfer sensors[J] . Biochemistry, 2014, 53(40):6370-6381. [62] Laviv T, Kim BB, Chu J, et al. Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins[J] . 2016, 13(12):989-992. [63] Zhu X, Zhang L, Kao Y, et al. A tunable fluorescent timer method for imaging spatial-temporal protein dynamics using light-driven photoconvertible protein[J] . Journal of Biophotonics, 2015, 8(3):226-232. [64] Takamura A, Hattori M, Yoshimura H, et al. Simultaneous time-lamination imaging of protein association using a split fluorescent timer protein[J] . Analytical Chemistry, 2015, 87(6):3366-3372. [65] Tsuboi T, Kitaguchi T, Karasawa S, et al. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein[J] . Molecular Biology of the Cell, 2009, 21(1):87-94. [66] Khmelinskii A, Keller PJ, Bartosik A, et al. Tandem fluorescent protein timers for in vivo analysis of protein dynamics[J] . Nat Biotechnol, 2012, 30(7):708-714. [67] Barry JD, Donà E, Gilmour D, et al. TimerQuant:a modelling approach to tandem fluorescent timer design and data interpretation for measuring protein turnover in embryos[J] . Development(Cambridge, England), 2015, 143(1):174-179. [68] Khmelinskii A, Knop M. Analysis of protein dynamics with tandem fluorescent protein timers[M] . Exocytosis and Endocytosis, Ivanov AI, New York:Springer New York, 2014, 195-210. [69] Dona E, Barry JD, Valentin G, et al. Directional tissue migration through a self-generated chemokine gradient[J] . Nature, 2013, 503(7475):285-289. [70] Khmelinskii A, Meurer M, Ho C, et al. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers[J] . Molecular Biology of the Cell, 2015, 27(2):360-370. [71] Subach FV, Patterson GH, Renz M, et al. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells[J] . Journal of the American Chemical Society, 2010, 132(18):6481-6491. [72] Chudakov DM, Lukyanov S, Lukyanov KA. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2[J] . 2007, 2(8):2024-2032. [73] Zhang M, Chang H, Zhang Y, et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins[J] . 2012, 9(7):727-729. [74] Hoi H, Shaner NC, Davidson MW, et al. A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization[J] . Journal of Molecular Biology, 2010, 401(5):776-791. [75] Subach OM, Patterson GH, Ting L, et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange[J] . Nature Methods, 2011, 8(9):771-777. [76] Piatkevich KD, Subach FV, Verkhusha VV. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome[J] . Nature Communications, 2013, 4:2153. [77] Griswold SL, Sajja KC, Jang C, et al. Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time lapse imaging during development[J] . Genesis, 2011, 49(7):591-598. [78] Nickerson A, Huang T, Lin L, et al. Photoactivated localization microscopy with bimolecular fluorescence complementation(BiFC-PALM)[J] . J Vis Exp, 2015(106):e53154. [79] Shroff H, White H, Betzig E. Photoactivated localization microscopy(PALM)of adhesion complexes[J] . Current Protocols in Cell Biology, 2013, Chapter 4:t4.t21. [80] Brown TA, Tkachuk AN, Shtengel G, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction[J] . Molecular and Cellular Biology, 2011, 31(24):4994-5010. [81] Wang S, Moffitt JR, Dempsey GT, et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[J] . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(23):8452-8457. [82] Mckinney SA, Murphy CS, Hazelwood KL, et al. A bright and photostable photoconvertible fluorescent protein for fusion tags[J] . Nature Methods, 2009, 6(2):131-133. [83] Fuchs J, Bohme S, Oswald F, et al. A photoactivatable marker protein for pulse-chase imaging with superresolution[J] . 2010, 7(8):627-630. [84] Subach OM, Entenberg D, Condeelis JS, et al. A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics[J] . Journal of the American Chemical Society, 2012, 134(36):14789-14799. [85] Subach FV, Subach OM, Gundorov IS, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking[J] . Nature Chemical Biology, 2009, 5(2):118-126. [86] Tsuboi T, Kitaguchi T, Karasawa S, et al. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein[J] . Molecular Biology of the Cell, 2009, 21(1):87-94. [87] Griswold SL, Sajja KC, Jang C, et al. Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time lapse imaging during development[J] . Genesis, 2011, 49(7):591-598. [88] Jensen NA, Danzl JG, Willig KI, et al. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein dreiklang[J] . Chemphyschem, 2014, 15(4):756-762. [89] Duwé S, Moeyaert B, Dedecker P. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI[J] . Curr Protoc Chem Biol, 2015, 7:27-41. [90] Wang S, Chen X, Chang L, et al. GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy[J] . ACS Nano, 2016, 10(10):9136-9144. [91] Lavoie-Cardinal F, Jensen NA, Westphal V, et al. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins[J] . Chemphyschem, 2014, 15(4):655-663. [92] Zhang X, Zhang M, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J] . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(37):10364-10369. [93] El Khatib M, Martins A, Bourgeois D, et al. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm[J] . Scientific Reports, 2016, 6:18459. [94] Smyrnova D, Zinovjev K, Tu?ón I, et al. Thermal isomerization mechanism in dronpa and its mutants[J] . The Journal of Physical Chemistry B, 2016, 120(50):12820-12825. [95] Zhang X, Chen X, Zeng Z, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging(SOFI)[J] . ACS Nano, 2015, 9(3):2659-2667. [96] Morozov D, Groenhof G. Hydrogen bond fluctuations control photochromism in a reversibly photo-switchable fluorescent protein[J] . Angewandte Chemie International Edition, 2016, 55(2):576-578. [97] Subach OM, Malashkevich VN, Zencheck WD, et al. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins[J] . Chemistry & Biology, 2010, 17(4):333-341. [98] Armengol P, Gelabert R, Moreno M, et al. New insights into the structure-spectrum relationship in S65T/H148D and E222Q/H148D green fluorescent protein mutants:a theoretical assessment[J] . Organic & Biomolecular Chemistry, 2014, 12(48):9845-9852. [99] Pletnev S, Subach FV, Dauter Z, et al. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores[J] . Journal of the American Chemical Society, 2010, 132(7):2243-2253. [100] Henderson JN, Osborn MF, Koon N, et al. Excited state proton transfer in the red fluorescent protein mKeima[J] . Journal of the American Chemical Society, 2009, 131(37):13212-13213. [101] Shu X, Wang L, Colip L, et al. Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein[J] . Protein Science:A Publication of the Protein Society, 2009, 18(2):460-466. [102] Takemoto K, Matsuda T, Sakai N, et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation[J] . Scientific Reports, 2013, 3:2629. [103] Pletneva NV, Pletnev VZ, Sarkisyan KS, et al. Crystal structure of phototoxic orange fluorescent proteins with a tryptophan-based chromophore[J] . PLoS One, 2015, 10(12):e145740. [104] Subach OM, Cranfill PJ, Davidson MW, et al. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore[J] . PLoS One, 2011, 6(12):e28674. [105] Tsien RY. Rosy dawn for fluorescent proteins[J] . Nat Biotechnol, 1999, 17(10):956-957. [106] Bindels DS, Haarbosch L, van Weeren L, et al. mScarlet:a bright monomeric red fluorescent protein for cellular imaging[J] . 2017, 14(1):53-56. |
[1] | Liang Junting, Li Luzhi, Chen Shaopeng, Jiao Zhen. Study on Sites of the Tolerate Peptide Insertion in the Fluorescent Protein of mCherry [J]. Biotechnology Bulletin, 2013, 0(5): 144-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||