[1] 李仕贵, 周开达, 朱立煌. 水稻温敏显性核不育基因的遗传分析和分子标记定位[J] . 科学通报, 1999, 44(9):955. [2] 袁隆平. 水稻光, 温敏不育系的提纯和原种生产[J] . 杂交水稻, 1994(6):1-3. [3] Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development[J] . Annual Review of Plant Biology, 2012, 62(1):437. [4] Lu P, Chai M, Yang J, et al. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. [J] . Plant Physiology, 2014, 164(4):1893. [5] Worrall D, Hird DL, Hodge R, et al. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J] . Plant Cell, 1992, 4(7):759-71. [6] Dong X, Hong Z, Sivaramakrishnan M, et al. Callose synthase(CalS5)is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis[J] . Plant Journal for Cell & Molecular Biology, 2005, 42(3):315-328. [7] Enns LC, Kanaoka MM, Torii KU, et al. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility[J] . Plant Molecular Biology, 2005, 58(3):333-349. [8] Nishikawa S, Zinkl GM, Swanson RJ, et al. Callose(β-1, 3 glucan)is essential for Arabidopsis pollen wall patterning, but not tube growth[J] . Bmc Plant Biology, 2005, 5(1):1-9. [9] Shi X, Han X, Lu T. Callose synthesis during reproductive develop-ment in monocotyledonous and dicotyledonous plants[J] . Plant Signaling & Behavior, 2015, 11(2). [10] Shi X, Sun X, Zhang Z, et al. GLUCAN SYNTHASE-LIKE 5(GSL5)plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice[J] . Plant & Cell Physiology, 2015, 56(3):497. [11] Yang C, Zhou H, Shi X, et al. Identification and Analysis of Zbs1, a Dominant Male-Sterile Mutant of Naked Oat(Avena nuda L.)[J] . 2016, 56(4). [12] York WS, Darvill AG, Mcneil M, et al. Isolation and characteriza-tion of plant cell walls and cell wall components[J] . Methods in Enzymology, 1986, 118(1):3-40. |