[1]中华人民共和国农业部. 农业部关于印发《到2020年化肥使用量零增长行动方案》的通知[EB/OL]. http://www. moa. gov. cn/zwllm/tzgg/tz/201503/t20150318_4444765. htm. [2]Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria(PGPR):emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28:1327-1350. [3]Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology:formulations and practical perspectives(1998-2013)[J]. Plant and Soil, 2013, 378:1-33. [4]Malik KA, Bilal R. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria(PGPR)with kallar grass and rice[J]. Plant and Soil, 1997, 194(1/2):37-44. [5]陈佛保, 柏珺, 林庆祺, 等. 植物根际促生菌(PGPR)对缓解水稻受土壤锌胁迫的作用[J]. 农业环境科学学报, 2012, 31(1):67-74. [6]姚拓, 龙瑞军, 王刚, 等. 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究[J]. 土壤学报, 2004, 41(3):444-448. [7] 丁延芹, 杜秉海. 玉米根际细菌中PGPR的筛选及初步鉴定[J]. 土壤肥料, 2001, 3:41-43. [8]王春霞. 棉花PGPR菌株的分离、筛选、鉴定、作用机制及其分子生态学研究[J]. 植物病理学报, 1998, 2:95-96. [9]吴皓琼, 牛彦波, 殷博, 等. PGPR植物促生肥在大豆上应用效果研究[J]. 生物技术, 2011, 3:90-94. [10]王豹祥, 李富欣, 张朝辉, 等. 应用PGPR菌肥减少烤烟生产化肥的施用量[J]. 土壤学报, 2011, 48(4):813-822. [11]姜瑛, 吴越, 王国文, 等. 一株固氮解磷菌的筛选鉴定及其对花生的促生作用研究[J]. 土壤, 2015, 47(4):698-703. [12]李引, 虞丽, 李辉信, 等. 一株花生根际促生菌的筛选鉴定及其特性研究[J]. 生态与农村环境学报, 2012, 28(4):416-421. [13]闫小梅, 虞丽, 叶成龙, 等. 一株灰潮土解磷菌的解磷特性及其对花生的促生作用[J]. 中国农学通报, 2015, 31(26):150-155. [14]张东艳, 刘晔, 吴越, 等. 花生根际产IAA菌的筛选鉴定及其效应研究[J]. 中国油料作物学报, 2016, 38(1):104-110. [15]鲍士旦. 土壤农化分析[M]. 第3版. 北京:中国农业出版社, 2000. [16] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌的筛选及鉴定[J]. 微生物学报, 2010, 07:853-861. [17]Libbert E, Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism[J]. Physiol Plantarum, 1969, 22:51-58. [18]Glickmann E, Dessaux Y. A Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied Microbiology, 1995, 61(2):793-796. [19]东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. [20]布坎南 RE, 吉本斯 NE. 伯杰细菌鉴定手册[M]. 北京:科学出版社, 1984. [21] 夏北成, Zhou JZ. 分子生物学方法在微生物生态学中的应用[J]. 中山大学学报:自然科学版, 1998, 37(2):97-101. [22] Monis PT, Giglio S, Saint CP. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Analytical Biochemistry, 2005, 340, (1):24-34. [23] 毛小芳, 胡锋, 陈小云, 等. 不同土壤水分条件下华美新小杆线虫对枯草芽胞杆菌数量、活性及土壤氮素矿化的影响[J]. 应用生态学报, 2007, 18(2):405-410. [24]胡佩, 杨红, 刘德辉, 等. 高效液相色谱法测定蚓粪中的植物激素[J]. 分析试验室, 2001, 20(6):8-10. [25] Kloepper J, Schroth MN. Plant growth-promoting rhizobacteria on radishes[C]//Proceedings of the 4th international conference on plant pathogenic bacteria, 1978:879-882. [26] Bashan Y, De-Bashan LE. Chapter Two-How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment[M]// Advances in Agronomy. Elsevier Science & Technology, 2010:77-136. [27]Weller DM, Raaijmakers JM, Gardener BB, et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens[J]. Annual Review of Phytopathology, 2002, 40(1):309-348. [28] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 2003, 255(2):571-586. [29]Ryu CM, Farag MA, Hu CH, et al. Bacterial volatiles promote growth in Arabidopsis[J]. Proc Natl Acad Sci USA, 2003, 100(8):4927-4932. [30]Carson KC, Meyer JM, Dilworth MJ. Hydroxamate siderophores of root nodule bacteria[J]. Soil Biology & Biochemistry, 2000, 32(1):11-21. [31]El-Tarabily KA, Sivasithamparam K. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters[J]. Soil Biology & Biochemistry, 2006, 38(7):1505-1520. [32]Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria[J]. Annual Review of Phytopathology, 2003, 26(1):379-407. [33] Schippers B. Biological control of pathogens with rhizobacteria[C]// Biological control of pests, pathogens and weeds:develop-ments and prospects:proceedings of a Royal Society discussion meeting held on 18 and 19 February 1987 / organized and edited by R. K. S. Wood and M. J. Way. 1988:291-293. [34] Stutz EW, Defago G, Kern H. Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco[J]. Phytopathology, 1986, 76(2):181-185. [35]Glick BR. The enhancement of plant growth by free-living bacteria[J]. Canadian Journal of Microbiology, 1995, 41(2):109-117. [36]陈中义, 张杰, 黄大昉. 植物病害生防芽胞杆菌抗菌机制与遗传改良研究[J]. 植物病理学报, 2003, 33(2):97-103. [37]谢越盛, 许泉, 王大成, 等. 植物根际促生枯草芽胞杆菌JC01筛选[J]. 微生物学通报, 2016, 43(10):2187-2196. [38]孙广正, 姚拓, 赵桂琴, 等. 植物根际促生菌对两种真菌病害病原的抑制作用及其鉴定[J]. 草业学报, 2016, 25(8):154-163. [39]尹瑞龄. 我国旱地土壤的溶磷微生物[J]. 土壤, 1988, 20(5):243-246. [40]Baset Mia MA, Shamsuddin ZH, Wahab Z, et al. Effect of plant growth promoting rhizobacterial(PGPR)inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition[J]. Australian Journal of Crop Science, 2010, 4(2):85-90. [41] Dobbelaere S, Croonenborghs A, Thys A, et al. Responses of agronomically important crops to inoculation with Azospirillum[J]. Functional Plant Biology, 2001, 28(28):871-879. [42] Saravanakumar D, Samiyappan R. ACC deaminase from Pseudom-onas fluorescens mediated saline resistance in groundnut(Arachis hypogea)plants[J]. Journal of Applied Microbiology, 2007, 102(5):1283-1292. [43]Antoun H, Beauchamp CJ, Goussard N, et al. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:Effect on radishes(Raphanus sativus L. )[J]. Plant and Soil, 1998, 204(1):57-67. [44]Riggs PJ, Chelius MK, Iniguez AL, et al. Enhanced maize productivity by inoculation with diazotrophic bacteria[J]. Functional Plant Biology, 2001, 28(9):829-836. [45]Kloepper JW, Gutiérrezestrada A, Mcinroy JA. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria[J]. Canadian Journal of Microbiology, 2007, 53(2):159-167. [46]Han J, Sun LX, Cai Z, et al. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens[J]. Systematic & Applied Microbiology, 2005, 28(1):66. [47]Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS MicroBiol Rev, 2007, 31(4):425-448. [48]Feng K, Lu HM, Sheng HJ, et al. Effect of organic ligands on biological availability of inorganic phosphorus in soils[J]. Pedosphere, 2004, 14(1):85-92. |