[1]柴方营. 中国水资源产权配置与管理研究[D]. 哈尔滨:东北农业大学, 2006. [2]齐述华. 干旱监测遥感模型和中国干旱时空分析[D]. 北京:中国科学院研究生院, 2004. [3]李希, 贺纪正, 郑袁明, 等. 新型保水剂应用于土壤-小白菜系统的环境安全评价[J]. 环境科学, 2014, 35(2):780-785. [4]王传海, 何都良, 郑有飞, 等. 保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J]. 中国农业气象, 2004, 25(2):20-23. [5]张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18(2):116-120. [6]钱春香, 王明明, 许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报:自然科学版, 2013, 43(3):669-674. [7]周际海, 黄荣霞, 樊后保, 等. 污染土壤修复技术研究进展[J]. 水土保持研究, 2016, 23(3):366-372. [8]王传海, 何都良, 郑有飞, 等. 保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J]. 中国农业气象, 2004, 25(2):20-23. [9]张新民, 姚克敏, 徐虹. 新型高效吸水材料(γ-PGA)的农业应用研究初报[J]. 南京气象学院学报, 2004, 27(2):224-229. [10]张文, 张树清, 王学江. γ-聚谷氨酸的微生物合成及其在农业生产中的应用[J]. 中国农学通报, 2014, 27(6):40-45. [11]张超. 环境友好型土壤保水剂聚γ-谷氨酸高吸水性树脂的制备[D]. 曲阜:曲阜师范大学, 2009. [12]史文娟, 梁嘉平, 陶汪海, 等. 添加γ-聚谷氨酸减少土壤水分深层渗漏提高持水能力[J]. 农业工程学报, 2015, 31(23):94-100. [13]白文波, 王春艳, 李茂松, 等. 不同灌溉条件下保水剂对新疆棉花生长及产量的影响[J]. 农业工程学报, 2010, 26(10):69-76. [14]陈晓蓉, 刘辉, 陈薇, 等. 几种矿物复合保水剂的保水性能及养分增效研究[J]. 土壤学报, 2012, 49(01):194-197. [15]Busscher WJ, Bjorneberg DL, Sojka RE. Field application of PAM as an amendment in deep-tilled US southeastern coastal plain soils[J]. Soil and Tillage Research, 2009, 104(2):215-220. [16]刘玮琦, 茆振川, 杨宇红, 等. 应用16S rRNA基因文库技术分析土壤细菌群落的多样性[J]. 微生物学报, 2008, 48(10):1344-1350. [17]徐华勤, 肖润林, 邹冬生, 等. 长期施肥对茶园土壤微生物群落功能多样性的影响[J]. 生态学报, 2007, 27(8):3355-3361. [18]Tarui Y, Iida H, Ono E, et al. Biosynthesis of poly-γ-glutamic acid in plants:Transient expression of poly-γ-glutamate synthetase complex in tobacco leaves[J]. Journal of Bioscience and Bioengineering, 2005, 100(4):443-448. [19] Doran JW, Zeiss MR. Soil health and sustainability:managing the biotic component of soil quality[J]. Applied Soil Ecology, 2000, 15(1):3-11. [20]朱安婷, 蒋友武, 谢国生, 等. 外源聚γ-谷氨酸对水稻幼苗耐旱性和渗透调节的影响[J]. 核农学报, 2010, 24(6):1269-1273. [21]郝荣华, 张晓元, 刘飞, 等. 不同分子量γ-聚谷氨酸对绿豆萌发及幼苗的影响[J]. 江苏农业科学, 2016, 44(6):169-171. [22]Ibekwe AM, Kennedy AC, Frohne PS, et al. Microbial diversity along a transect of agronomic zones[J]. FEMS Microbiology Ecology, 2002, 39(3):183-191. [23]Set?l? H, McLean MA. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi[J]. Oecologia, 2004, 139(1):98-107. [24]Nie S, Xu H, Li S, et al. Relationships between abundance of microbial functional genes and the status and fluxes of carbon and nitrogen in rice rhizosphere and bulk soils[J]. Pedosphere, 2014, 24(5):645-651. [25]Ling N, Deng K, Song Y, et al. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer[J]. Microbiological Research, 2014, 169(7):570-578. [26]Zhang Q, Shamsi IH, Xu D, et al. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure[J]. Applied Soil Ecology, 2012, 57:1-8. [27] Geisseler D, Horwath WR, Joergensen RG, et al. Pathways of nitro-gen utilization by soil microorganisms-a review[J]. Soil Biology & Biochemistry, 2010, 42(12):2058-2067. [28]Puglisi E, Fragoulis G, Ricciuti P, et al. Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize(Zea mays L. )[J]. Chemosphere, 2009, 77(6):829-837. [29]褚群. γ-聚谷氨酸和解磷菌M20对番茄和西瓜穴盘苗基质养分供应和根际细菌群落结构的影响[D]. 北京:中国农业科学院, 2016. [30]Wang J, Li X, Zhang J, et al. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture[J]. Plant Ecology, 2012, 213(12):1883-1892. [31]Xu Z, Lei P, Feng X, et al. Effect of poly(γ-glutamic acid)on microbial community and nitrogen pools of soil[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2013, 63(8):657-668. |