[1]Normile D. Reinventing rice to feed the world[J]. Science, 2008, 321(7):330-333. [2]Pathak MD, Cheng CH, Fortuno ME. Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice[J]. Nature, 1969, 223(5205):502-504. [3]Jung JK, Im DJ. Feeding inhibition of the brown planthopper, Nilaparvata lugens(Homoptera:Delphacidae)on a resistant rice variety[J]. J Asia-Pacific Entomol, 2005, 8(3):301-308. [4]Cohen MB, Alam SN, Medina EB, Bernal CC. Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64:Mechanism and role in successful N lugens management in Centrl Luzon, Philippines[J]. Entomol Exp Appl, 1997, 85(3):221-229. [5]Cuong NL, Ben PT, Phuong LT, Chau LM, Cohen MB. Effect of host plant resistance and insecticide on brown planthopper Nilaparvata lugens(St?l)and predator population development in the Mekong Delta, Vietnam[J]. Crop Prot, 1997, 16(8):707-715. [6]Khush GS. Green revolution:The way forward[J]. Nat Rev Genet, 2001, 2(10):815-822. [7]Du B, Zhang W, Liu B, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proc Natl Acad Sci USA, 2009(106):22163-22168. [8]Zhao Y, Huang J, Wang ZZ, et al. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation[J]. Proc Natl Acad Sci USA, 2016, 113(45):12850-12855. [9]Liu Y, Wu H, Chen H, et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice[J]. Nat Biotechnol, 2015, 33(3):301-305. [10]Wang B, Huang Z, Shu LH, et al. Mapping of two new brown planthopper resistance genes from wild rice[J]. Chinese Science Bulletin, 2001, 46(13):1092-1095. [11]Huang Z, He GC, Shu LH, et al. Identification and mapping of two brown planthopper resistance genes in rice[J]. Theor Appl Genet, 2001, 102:929-934. [12]苏金, 朱汝财. 渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J]. 植物学通报, 2001, 18(2):129-136. [13] Hmida-Sayari A, Cargouri-Bouzid R, Bidani A, et al. Overexpres-sion of Δ1-pyrroline-5-carboxylate synthetase increases proline producyion and confers salt tolerance in transgenic potato plants[J]. Plant Science, 2005, 169(4):746-752. [14]De Ronder JA. Photosynthetic response of transgenic soybean, containing an Arabidopsis P5CR gene, during heat and drought stress[J]. Journal of Plant Physiology, 2004, 161(11):1211-1224. [15]Hbc M, Marur CJ, Bespalhok FJC, et al. Osmotic adjustment in transgenic citrus root-stock Carrzo citrange(Citrus sinensis Osb. ×Poncirus trifoliate L. Raf)overproducting proline[J]. Plant Science, 2005, 167(6):1375-1381. [16]Nayyar H, Gupta D. Differential sensitivity of C3 and C4 plants to water deficit stress:Association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany, 2006, 58:106-113. [17]Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB 1 A mediates crosstalk between submergence and drought tolerance in rice[J]. Plant Cell, 2011, 23(1):412-427. [18]Ganguly M, Datta K, Roychoudhury A, et al. Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance[J]. Plant Signaling & Behavior, 2012, 7(4):502-509. [19]Hong CY, Chao YY, Yang MY, et al. NaCl-induced expression of glutathione reductase in roots of rice(Oryza sativa L.)seedlings is mediated through hydrogen peroxide but not abscisic acid[J]. Plant and Soil, 2009, 320(1-2):103-115 [20]Duan JL, Cai W. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance[J]. PLoS One, 2012, 7(9):e45117. [21]Checker VG, Chhibbar AK, Khurana P. Stress-in-ducible expression of barley HvIII gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress[J]. Transgenic Res, 2012, 21(5):939-957. [22] Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid[J]. Annu Rev Plant Physiol Mol Biol, 1988, 39(4):439-473. [23]Pe?a-Cortès H, Willmitzer L, Sánchez-Serrano JJ. Abscisic acid mediates the wound induction but not developmental-specific expression of the proteinase inhibitor II gene family[J]. Plant Cell, 1991, 3(9):963-972. [24]Strommer J, Garabagi F. ADH and PDC:Key roles for enzymes of alcoholic fermentation[M]//Gerats T, Strommer J(eds). Petunia:Evolutionary, Developmental and Physiological Genetics. New York:Springer-Verlag New York Inc., 2009, 71-84. [25]刘威, 陈昊, 靳亚忠, 等. 高等植物醇脱氢酶及其基因家族研究进展[J]. 植物生理学报, 2014, 50(10):1479-1493. [26]Popko J, H?nsch R, Mendel RR, et al. The role of abscisic acid and auxin in the response of poplar to abiotic stress[J]. Plant Biology, 2010, 12(2):242-258. [27]Ganguly M, Datta K, Roychoudhury A, et al. Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance[J]. Plant Signal Behav, 2012, 7(4):502-509. [28]Lenka SK, Katiyar A, Chinnusamy V, et al. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance[J]. Plant Biotechnol J, 2011, 9(3):315-327. [29]Kim H, Lee K, Hwang H, et al. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression[J]. J Exp Bot, 2014, 65(2):453-464. |