Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (1): 40-48.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0703
Previous Articles Next Articles
ZHANG Fan1, YIN Jun-long1, GUO Ying-qi2, YUE Yan-ling1
Received:
2017-08-24
Online:
2018-01-26
Published:
2018-01-22
ZHANG Fan, YIN Jun-long, GUO Ying-qi, YUE Yan-ling. Research Advances on WRKY Transcription Factors[J]. Biotechnology Bulletin, 2018, 34(1): 40-48.
[1] Jiang Y, Zeng B, Zhao HN, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. J Integr Plant Biol, 2012, 54(9):616-630. [2] Bakshi M, Oelmüller R. WRKY transcription factors[J]. Plant Signaling & Behavior, 2014, 9(2):247-258. [3] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular Genetics and Genomics, 1994, 244(6):563-571. [4] Rushton, Paul J, Somssich, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5):247-258. [5] Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of an Arabidopsis WRKY DNA binding domain[J]. Plant Cell, 2005, 17(3):944-956. [6] Xie Z, Zhang ZL, Zou X, et al. Annotations and functional analyses of the rice WRKY gene super family reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137:176-189. [7] Zhang Y, Wang L. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1):1-12. [8] Li H, Yan X, Yu X, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1, and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010, 232(6):1325-1337. [9] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2):120-128. [10] Shi W, Hao L, Li J, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports, 2014, 33(3):483-498. [11] Wang X, Yan Y, Li Y, et al. GhWRKY40, a Multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One, 2014, 9(4):e93577. [12] Wen F, Zhu H, Li P, et al. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon[J]. DNA Research, 2014, 21(3):327-339. [13] Zhang Y, Feng JC. Identification and characterization of the grape WRKY family[J]. Biomed Research International, 2014, 2014:doi:10.1155/2014/787680. [14] Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact, 2010, 23:558-565. [15] Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110(21):1963-1971. [16] Cheng HT, Wang SP. WRKY-Type transcription factors:a significant factor in rice-pathogen interactions[J]. Scientia Sinica, 2014, 44(8):784-793. [17] Wang J, Tao F, An F, et al. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici[J]. Mol Plant Pathol, 2016, 18(5):649-661. [18] Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371. [19] Deng H, Xing, Zi B, et al. Stress- and pathogen-induced arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3):459-470. [20] Hwang KF, Chang CC. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell, 2001, 13(7):1527-1540. [21] Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875):977-983. [22] Akira N, Setsuko F, Shingo G, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice[J]. BMC Plant Biology, 2013, 13(1):150-160. [23] Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress:current understanding and future directions[J]. Frontiers in Plant Science, 2016, 7:1029. [24] Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:Key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11. [25] Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:Achievements and challenges[J]. Plant Science, 2013, 205(5):38-47. [26] Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017, 22(1):53-65. [27] Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252. [28] Li S, Xiang Z, Chen L, et al. Functional characterization of Arabidopsis thaliana, WRKY39 in heat stress[J]. Molecules and Cells, 2010, 29(5):475-483. [29] He GH, Xu JY, Wang YX, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1):116-131. [30] Liu QL, Zhong M, Li S, et al. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, intobacco enhances tolerance to salt stress[J]. Plant Physiol Biochem Ppb, 2013, 69(8):27-33. [31] Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45, enhances disease resistance and drought tolerance in Arabidopsis [J]. Environmental & Experimental Botany, 2009, 65(1):35-47. [32] Yu S, Ligang C, Liping Z, et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis[J]. Journal of Biosciences, 2010, 35(3):459-471. [33] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports, 2009, 28(1):21-30. [34] Wang C, Deng P, Chen L, et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2013, 8(6):e65120. [35] Wang F, Hou X, Tang J, et al. A novel cold-inducible gene from Pak-choi(Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco[J]. Mol Biol Rep, 2012, 39(4):4553-4564. [36] Jiang WB, Yu DQ. Arabidopsis WRKY2 transcription factor may be involved in osmotic stress response[J]. Acta Botanica Yunnanica, 2009, 31(5):427-432. [37] Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Reports, 2015, 34(8):1295-1306. [38] Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell, 2005, 17(1):268-281. [39] Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. J Biol Chem, 2004, 279:11736-11743. [40] Ying M, Laun T M, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Molecular Biology, 2007, 65(1):63-76. [41] Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J]. Molecular plant-microbe interactions:MPMI, 2012, 25(12):1639. [42] Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(3):e0120646. [43] Berri S, Abbruscato P, Faivre-Rampant O, et al. Characterization of WRKY co-regulatory networks in rice and Arabidopsis[J]. BMC Plant Biology, 2009, 9(1):120-141. [44] Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53, during leaf senescence of Arabidopsis thaliana[J]. European Journal of Cell Biology, 2010, 89(2-3):133-137. [45] Banerjee A, Roychoudhury A. WRKY proteins:signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015:807560. [46] Turck F, Zhou A, Somssich I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J]. Plant Cell, 2004, 16(10):2573-2585. [47] Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5):1310-1326. [48] De ZA, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 2016, 21(8):677-685. [49] Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence[J]. Curr Opin Plant Biol, 2009, 12(4):421-426. [50] Fiil BK, Petersen K, Petersen M, et al. Gene regulation by MAP kin- ase cascades[J]. Curr Opin Plant Biol, 2009, 12(5):615-621. [51] Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity[J]. Curr Opin Plant Biol, 2012, 15(4):431-437. [52] Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27(16):2214-2221. [53] Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2(Bcl-2)-associated athanogene 7(BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29[J]. New Phytologist, 2016, 214(2):695-705. [54] Danquah A, De ZA, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnology Advances, 2014, 32(1):40-52. [55] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51:21-37. [56] Li S, Zhou X, Chen L, et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J]. Mol Cells, 2010, 29:475-483. [57] Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20:2357-2371. [58] Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. Plant Cell, 2007, 19:2064-2076. [59] Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26:230-245. [60] Zou X, Seemann JR, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway[J]. J Biol Chem, 2004, 279:55770-55779. [61] Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Mol Plant, 2012, 5:1375-1388. [62] Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935. [63] Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiol Biochem, 2016, 108:478-487. [64] Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11:e0150572. [65] Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. [66] Chan YP, Ju HL, Jae HY, et al. WRKY group IId transcription factors interact with calmodulin[J]. Febs Letters, 2005, 579(6):1545-1550. [67] Ishida S, Fukazawa J, Yuasa T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10):2641-2651. [68] Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259. [69] Kumaran S, Yi H, Krishnan HB, et al. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions[J]. J Biol Chem, 2009, 284(15):10268-10275. [70] Shen YH, Godlewski J, Bronisz A, et al. Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding[J]. Mol Biol Cell, 2003, 14(11):4721-4733. [71] Arulpragasam A, Magno AL, Ingley E, et al. The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling[J]. Biochemical Journal, 2012, 441(3):995-1006. [72] Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. [73] Seo PJ. Recent advances in plant membrane-bound transcription factor research:Emphasis on intracellular movement[J]. J Integr Plant Biol, 2014, 56(4):334-342. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[3] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[4] | KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage [J]. Biotechnology Bulletin, 2023, 39(9): 291-299. |
[5] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[8] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[9] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[10] | YU Hui, WANG Jing, LIANG Xin-xin, XIN Ya-ping, ZHOU Jun, ZHAO Hui-jun. Isolation and Functional Verification of Genes Responding to Iron and Cadmium Stresses in Lycium barbarum [J]. Biotechnology Bulletin, 2023, 39(7): 195-205. |
[11] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[12] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[13] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[14] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[15] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||