Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (2): 45-53.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1040
Previous Articles Next Articles
SHI Chao-nan, YANG Zhen, DING Zuo-mei, ZHANG Chao, WU Jian-guo
Received:
2017-12-07
Online:
2018-02-26
Published:
2018-03-12
SHI Chao-nan, YANG Zhen, DING Zuo-mei, ZHANG Chao, WU Jian-guo. Advances in the Studies of Rice Grassy Stunt Virus[J]. Biotechnology Bulletin, 2018, 34(2): 45-53.
[1] Normile D.Agricultural research. Reinventing rice to feed the world[J]. Science, 2008, 321(5887):330-3. [2] Zeigler RS, Barclay A.The relevance of rice[J]. Rice, 2008, 1(1):3-10. [3] Sasaya T, Nakazono-Nagaoka E, Saika H, et al.Transgenic strategies to confer resistance against viruses in rice plants[J]. Frontiers in Microbiology, 2014, 4(2):409. [4] Rivera CT, Ou SH, Iida TT.Grassy stunt disease of rice and its transmission by the planthopper Nilaparvata lugens Stal[J]. Plant Disease Reporter, 1966, 50(7):453-456. [5] Hibino H.Biology and epidemiology of rice viruses[J]. Annu Rev Phytopathol, 1996, 34(1):249-274. [6] Shirako Y, Falk BW, Haenni AL.Genus tenuivirus, in virus taxonomy:classification and nomenclature:Ninth Report of the International Commitee on Taxonomy of Viruses[M]//King AMQ, Lefkowitz EJ, Adams MJ, et al. San Diego:Elsevier Academic Press, 2011:771-776. [7] 谢联辉, 林奇英. 水稻品种对病毒病的抗性研究[J]. 福建农林大学学报:自然科学版, 1982, 2:003. [8] Hibino H.Rice grassy stunt virus[J]. Tropical Agriculture Research, 1986:165-171. [9] Cabauatan PQ, Cabunagan RC, Choi IR.Rice viruses transmitted by the brown planthopper Nilaparvata lugens St [10] 吴祖建, 谢莉妍. 中菲水稻病毒病的比较研究:Ⅴ. 水稻种质对病毒及其介体的抗性[J]. 福建农学院学报, 1994, 23(1):58-62. [11] Mayo M, De Miranda J, Falk B, et al.Genus Tenuivirus[M]//New York:Virus taxonomy. Academic Press, 2000:904-908. [12] Pellegrini S, Bassi M.Ultrastructure alterations in rice plants affected by “grassy stunt” disease[J]. Journal of Phytopathology, 1978, 92(3):247-250. [13] Shikata E, Senboku T, Ishimizu T.The causal agent of rice grassy stunt disease[J]. Proceedings of the Japan Academy. Ser. B:Physical and Biological Sciences, 1980, 56(2):89-94. [14] Zheng L, Mao Q, Xie L, Wei T.Infection route of rice grassy stunt virus, a tenuivirus, in the body of its brown planthopper vector, Nilaparvata lugens(Hemiptera:Delphacidae)after ingestion of virus[J]. Virus Research, 2014, 188:170-173. [15] 张春嵋, 林奇英. 水稻草矮病毒血清学和分子检测方法的比较[J]. 中国病毒学, 2000, 15(4):361-366. [16] 杨靓, 邓萍, 王开放, 等. 水稻草状矮缩病毒 P2 基因多克隆抗体的制备及应用[J]. 中国农学通报, 2012, 28(30):1-5. [17] Toriyama S.Purification and biochemical properties of rice grassy stunt virus[J]. Annals of the Phytopathological Society of Japan, 1985, 51:59. [18] Toriyama S, Kimishima T, Takahashi M.The proteins encoded by rice grassy stunt virus RNA5 and RNA6 are only distantly related to the corresponding proteins of other members of the genus Tenuivirus[J]. J Gen Virol, 1997, 78(9):2355-2363. [19] Ramirez BC, Macaya G, Calvert L A, et al.Rice hoja blanca virus genome characterization and expression in vitro[J]. J Gen Virol, 1992, 73(6):1457-1464. [20] Toriyama S, Watanabe Y.Characterization of single-and double-stranded RNAs in particles of rice stripe virus[J]. J Gen Virol, 1989, 70(3):505-511. [21] Falk B, Tsai J.Identification of single-and double-stranded RNAs associated with maize stripe virus[J]. Phytopathology, 1984, 74(8):909-915. [22] Toriyama S, Kimishima T, Takahashi M, et al.The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus[J]. J Gen Virol, 1998, 79(8):2051-2058. [23] Kormelink R, Garcia ML, Goodin M, et al.Negative-strand RNA viruses:the plant-infecting counterparts[J]. Virus Research, 2011, 162(1):184-202. [24] Liu X, Jin J, Qiu P, et al.Rice stripe tenuivirus has a greater tendency to use the prime-and-realign mechanism in transcription of genomic than in transcription of antigenomic template RNAs[J]. Journal of Virology, 2017, 92(1):e01414-e01417. [25] Liu X, Xiong G, Qiu P, et al.Inherent properties not conserved in other tenuiviruses increase priming and realignment cycles during transcription of Rice stripe virus[J]. Virology, 2016, 496:287. [26] Poch O, Sauvaget I, Delarue M, et al.Identification of four conserved motifs among the RNA-dependent polymerase encoding elements[J]. The EMBO Journal, 1989, 8(12):3867. [27] Chomchan P, Miranda G, Shiako Y.Detection of rice grassy stunt tenuivirus nonstructural proteins p2, p5 and p6 from infected rice plants and from viruliferous brown planthoppers[J]. Archives of Virology, 2002, 147(12):2291-2300. [28] Nguyen TD, Lacombe S, Bangratz M, et al.p2 of Rice grassy stunt virus(RGSV)and p6 and p9 of Rice ragged stunt virus(RRSV)isolates from Vietnam exert suppressor activity on the RNA silencing pathway[J]. Virus Genes, 2015, 51(2):267-275. [29] Takahashi M, Toriyama S, Hamamatsu C, et al.Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2[J]. J Gen Virol, 1993, 74(4):769-773. [30] De Miranda JR, Munozm, Wu R, et al.Sequence of rice hoja blanca tenuivirus RNA-2[J]. Virus Genes, 1996, 12(3):231-237. [31] Estabrook EM, Suyenaga K, Tsai JH, et al.Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membrane glycoproteins[J]. Virus Genes, 1996, 12(3):239-247. [32] Zhang C, Liu XJ, Wu KC, et al.Rice grassy stunt virus nonstructural protein p5 serves as a viral suppressor of RNA silencing and interacts with nonstructural protein p3[J]. Archives of Virology, 2015, 160(11):2769-2779. [33] Chomchan P, Li SF, Shirako Y.Rice grassy stunt tenuivirus nonstr-uctural protein p5 interacts with itself to form oligomeric complexes in vitro and in vivo[J]. Journal of Virology, 2003, 77(1):769-775. [34] 林丽明, 吴祖建. 水稻草矮病特异蛋白抗血清的制备及应用[J]. 植物病理学报, 1999, 29(2):126-131. [35] Hiraguri A, Netso O, Shimizu T, et al.The nonstructural protein pC6 of rice grassy stunt virus trans-complements the cell-to-cell spread of a movement-defective tomato mosaic virus[J]. Archives of Virology, 2011, 156(5):911-916. [36] Gomez-Roldan V, Fermas S, Brewer PB, et al.Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194. [37] Umehara M, Hanada A, Yoshida S, et al.Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210):195-200. [38] Ishikawa S, Maekawa M, Arite T, et al.Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1):79-86. [39] Lin H, Wang RX, Qian Q, et al.DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. Plant Cell, 2009, 21(5):1512-1525. [40] Zou J, Zhang SY, Zhang SY, et al.The rice HIGH-TILLERINGDWARF1 encodingan ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. The Plant Journal. 2006, 48(5):687-698. [41] Arite T, Iwata H, Ohshima K, et al.DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. The Plant Journal, 2007, 51(6):1019-1029. [42] Arite T, Umehara M, Ishikawa S, et al.d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers[J]. Plant Cell Physiolology, 2009, 50(8):1416-1424. [43] Gao ZY. Qian Q, Liu XH, et al.Dwarf 88, a novel putative esterase gene affecting architecture of rice plant[J]. Plant Mol Biol, 2009, 71(3):265-276. [44] Liu WZ, Wu C, Fu YP, et al.Identification and characterization of HTD2:a novel gene negatively regulating tiller bud outgrowth in rice[J]. Planta, 2009, 230(4):649-658. [45] Jiang L, Liu X, Xiong GS, et al.DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480):401-405. [46] Satoh K, Yoneyama K, Kondoh H, et al.Relationship between gene responses and symptoms induced by Rice grassy stunt virus[J]. Viruses Threatening Stable Production of Cereal Crops, 2013, 108. [47] Xu M, Zhu L, Shou H, et al.A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant and Cell Physiology, 2005, 46(10):1674-1681. [48] Satoh K, Kondoh H, Sasaya T, et al.Selective modification of rice(Oryza sativa)gene expression by rice stripe virus infection[J]. J Gen Virol, 2010, 91(1):294-305. [49] Miura K, Ikeda M, Matsubara A, et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6):545-549. [50] Mao C, Ding W, Wu Y, et al.Overexpression of a NAC-domain protein promotes shoot branching in rice[J]. New Phytologist, 2007, 176(2):288-298. [51] Yasuno N, Takamure I, Kidou SI, et al.Rice shoot branching requires an ATP-binding cassette subfamily G protein[J]. New Phytologist, 2009, 182(1):91-101. [52] Sakamoto T, Miura K, Itoh H, et al.An overview of gibberellin metabolism enzyme genes and their related mutants in rice[J]. Plant Physiology, 2004, 134(4):1642-1653. [53] Lo SF, Yang SY, Chen KT, et al.A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice[J]. Plant Cell, 2008, 20(10):2603-2618. [54] Satoh K, Shimizu T, Kondoh H, et al.Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus[J]. PLoS One, 2011, 6(3):e18094. [55] Yamamuro C, Ihara Y, Wu X, et al.Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9):1591-1605. [56] Shimizu T, Satoh K, Kikuchi S, et al.The repression of cell wall-and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus[J]. Molecular Plant-Microbe Interactions, 2007, 20(3):247-254. [57] Marathe R, Guan Z, Anandalashmi R, et al.Study of Arabidopsis thalianaresistome in response to Cucumber mosaic virus infection using whole genome microarray[J]. Plant Mol Biol, 2004, 55(4):501-520. [58] Choi D, Lee Y, Cho HT, et al.Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell, 2003, 15(6):1386-1398. [59] Lehto K, Tikkanen M, HiriarT JB, et al. Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus[J]. Molecular Plant-Microbe Interactions, 2003, 16(12):1135-1144. [60] Zhang C, Liu Y, Sun X, et al.Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and Tomato mosaic virus coat protein[J]. Biochem Biophys Res Commun, 2008, 374(2):253-257. [61] Cheng YQ, Liu ZM, Xu J, et al.HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta[J]. J Gen Virol, 2008, 89(8):2046-2054. [62] Park SY, Yu JW, Park JS, et al.The senescence-induced staygreen protein regulates chlorophyll degradation[J]. Plant Cell, 2007, 19(5):1649-1664. [63] Sato Y, Morita R, Katsuma S, et al.Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice[J]. The Plant Journal, 2009, 57(1):120-131. [64] Kusaba M, Ito H, Morita R, et al.Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence[J]. Plant Cell, 2007, 19(4):1362-1375. [65] Usugi HT, Oraura T, Tsuchizaki T, et al.Rice grassy stunt virus:a planthopper-borne circular filament[J]. Phytopathology, 1985, 75:894-899. [66] 张春嵋, 吴祖建, 林丽明, 等. 水稻草状矮化病毒沙县分离株基因组第六片段的序列分析[J]. 植物病理学报, 2001, 31(4):301-305. [67] Sanford J, Johnston SA.The concept of parasite-derived resistance-deriving resistance genes from the parasite’s own genome[J]. Journal of Theoretical Biology, 1985, 113(2):395-405. [68] Collinge DB, Jorgensen HJ, Lund OS, et al.Engineering pathogen resistance in crop plants:current trends and future prospects[J]. Annu Rev Phytopathol, 2010, 48:269-291. [69] Mansoor S, Amin I, Hussain M, et al.Engineering novel traits in plants through RNA interference[J]. Trends in Plant Science, 2006, 11(11):559-565. [70] Prins M, Laimer M, Noris E, et al.Strategies for antiviral resistance in transgenic plants[J]. Mol Plant Pathol, 2008, 9(1):73-83. [71] Shimizu T, Ogamino T, Hiraguri A, et al.Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference[J]. Phytopathology, 2013, 103(5):513-519. [72] Wu JG, Yang ZR, Wang Y, et al.Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA[J]. Elife, 2015, 4:e05733. [73] Wu JG, Yang RX, Yang ZR, et al.ROS accumulation and antiviral defence control by microRNA528 in rice[J]. Nature Plants, 2017, 3:16203. [74] 谢联辉, 林奇英. 中国水稻病毒病的诊断, 监测和防治对策[J]. 福建农业大学学报, 1994, 23(3):280-285. |
[1] | ZHANG Jing, YOU Chui-huai, CAO Yue, CUI Tian-zhen, YANG Jing-tao, LUO Jun. Sugarcane Rhizosphere Microecology and Its Relationship with Smut Control [J]. Biotechnology Bulletin, 2022, 38(11): 21-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||