Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (2): 38-44.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1011
Previous Articles Next Articles
FAN Su-su, TIAN Fang, HE Chen-yang
Received:
2017-11-28
Online:
2018-02-26
Published:
2018-03-12
FAN Su-su, TIAN Fang, HE Chen-yang. Regulation and Expression of Genes Encoding the Type III Secretion System in Xanthomonas oryzae pv. oryzae[J]. Biotechnology Bulletin, 2018, 34(2): 38-44.
[1] Alfano J, Collmer A.The type III(Hrp)secretion pathway of plant pathogenic bacteria:trafficking harpins, Avr proteins, and death[J]. J Bacteriol, 1997, 179:5655-5662. [2] Furutani A, Takaoka M, Sanada H.Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2009, 22:96-106. [3] Jones J, Dangl J.The plant immune system[J]. Nature, 2009, 444:323-329. [4] Ou S.Bacterial leaf blight[M]//. Ou S. Rice diseases. Kew:Commonwealth Mycological Institute, 1985:70-74. [5] Furutani A, Tsuge S, Ohnishi K, et al.Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2004, 186:1374-1380. [6] Ochiai H, Inoue Y, Takeya M, et al.Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity[J]. Jpn Agric Res Q, 2005, 39:275-287. [7] Oku T, Tanaka K, Iwamoto M, et al.Structural conservation of the hrp gene cluster in Xanthomonas oryzae pv. oryzae[J]. J Gen Plant Pathol, 2004, 70:159-167. [8] Tsuge S, Furutani A, Ikawa Y.Regulatory network of hrp gene expression in Xanthomonas oryzae pv. oryzae[J]. J Gen Plant Pathol, 2014, 80:303-313. [9] Fan S, Tian F, Li J, et al.Identification of plant phenolic compounds that suppress the Xanthomonas oryzae virulence in rice via targeting type III secretion system[J]. Mol Plant Pathol, 2017, 18:555-568. [10] 何晨阳, 吴茂森. 水稻—白叶枯病菌互作的功能基因组学研究[J]. 植物保护, 2007, 33:95-96. [11] Wengelnik K, Marie C, Russel M, et al.Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction[J]. J Bacteriol, 1996, 178:1061-1069. [12] Furutani A, Tsuge S, Oku T, et al.Hpa1 secretion via type III secretion system in Xanthomonas oryzae pv. oryza e[J]. J Gen Plant Pathol, 2003, 69:271-275. [13] Tsuge S, Furutani A, Fukunaka R, et al.Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium[J]. J Gen Plant Pathol, 2002, 68:363-371. [14] Takeuchi Y, Tohbaru M, Sato A.Polysaccharides in primary cell walls of rice cells in suspension culture[J]. Phytochemistry, 1994, 35:361-363. [15] Ray S, Rajeshwari R, Sonti RV.Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase[J]. Mol Plant Microbe Interact, 2000, 13:394-40. [16] Tsuge S, Ochiai H, Inoue Y, et al.Involvement of phosphoglucose isomerase in pathogenicity of Xanthomonas oryzae pv. oryzae[J]. Phytopathology, 2004, 94:478-483. [17] Gophna U, Ron EZ, Graur D.Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events[J]. Gene, 2003, 312:151-163. [18] Hutcheson S, Bretz J, Sussan T, et al.Enhancer binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains[J]. J Bacteriol, 2001, 183:5589-5598. [19] Wei Z, Beer S. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors[J]. J Bacteriol, 1995, 177:6201-6210. [20] Xiao Y, Heu S, Yi J, et al.Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes[J]. J Bacteriol, 1994, 176:1025-1036. [21] Bretz J, Losada L, Lisboa K, et al.Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae[J]. Mol Microbiol, 2002, 45:397-409. [22] Laub M, Goulian M.Specificity in two-component signal transduction pathways[J]. Annu Rev Genet, 2007, 41:121-145. [23] Wengelnik K, Bonas U.HrpXv, an AraC-type regulator activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria[J]. J Bacteriol, 1996, 178:3462-3469. [24] Tsuge S, Terashima S, Furutani A, et al.Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2005, 187:2308-2314. [25] Furutani A, Nakayama T, Ochiai H, et al.Identification of novel HrpXo regulons preceded by two cis acting elements, a plant-inducible promoter box and a -10 box like sequence, from the genome database of Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2006, 259:133-141. [26] Koebnik R, Kruger A, Thieme F, et al.Specific binding of the Xanthomonas campestris pv. vesicatoria AraCtype transcriptional activator HrpX to plant-inducible promoter boxes[J]. J Bacteriol, 2006, 188:7652-7660. [27] Guo W, Cai L, Zou H, et al.Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae[J]. Appl Environ Microbiol, 2012, 78:5672-5681. [28] Doyle E, Stoddard B, Voytas D, et al.TAL effectors:highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins[J]. Trends Cell Biol, 2013, 23:390-398. [29] Tang J, Liu Y, Barber C, et al.Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Mol Gen Genet, 1991, 226:409-417. [30] Dow J, Crossman L, Findlay K, et al.Biofilm dispersal in Xanthomonas campestrisis controlled by cell-cell signaling and is required for full virulence to plants[J]. Proc Natl Acad Sci USA, 2003, 100:10995-11000. [31] Dow J, Fouhy Y, Lucey J, et al.The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants[J]. Mol Plant Microbe Interact, 2006, 19:1378-1384. [32] He Y, Ng A, Xu M, et al.Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signaling network[J]. Mol Microbiol, 2007, 64:281-292. [33] Huang D, Tang D, Liao Q, et al.The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG[J]. Mol Plant Microbe Interact, 2009, 22:321-329. [34] 管文静, 吴茂森, 何晨阳. 水稻白叶枯病菌核苷酸信号受体蛋白Clpxoo的分子鉴定及其功能分析[J]. 微生物学报, 2009, 49:32-37. [35] 霍欢, 孙蕾, 田芳, 等. 水稻白叶枯病菌群体感应系统对T3SS基因表达的调控作用分析[J]. 植物病理学报, 2012, 42:620-625. [36] 孙蕾, 吴茂森, 陈华民, 等. 水稻白叶枯病菌Δrpfxoo基因缺失突变体DSF信号产生和毒性表达[J]. 微生物学报, 2010, 50:717-723. [37] Lee S, Jeong K, Han S, et al.The Xanthomonas oryzae pv. oryzae PhoPQ two component system is required for AvrXA21 activity, hrpG expression, and virulence[J]. J Bacteriol, 2008, 190:2183-2197. [38] Burdman S, Shen Y, Lee S, et al.RaxH/RaxR:a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity[J]. Mol Plant Microbe Interact, 2004, 17:602-612. [39] Lee S, Han S, Bartley L, et al.Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity[J]. Proc Natl Acad Sci USA, 2006, 103:18395-18400. [40] Zhang S, He Y, Xu M, et al.A putative colRXC1049-colSXC1050 two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses[J]. Res Microbiol, 2008, 159:569-578. [41] Tsuge S, Nakayama T, Terashima S, et al.Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2006, 188:4158-4162. [42] Dorman CJ.H-NS:a universal regulator for a dynamic genome[J]. Nat Rev Microbiol, 2004, 2:391-400. [43] Fang FC, Rimsky S.New insights into transcriptional regulation by H-NS[J]. Curr Opin Microbiol, 2008, 11:113-120. [44] Feng J, Song Z, Duan C, et al.The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice[J]. Microbiology, 2009, 155:3033-3044. [45] Kametani-Ikawa Y, Tsuge S, Furutani A, et al.An H-NS-like protein involved in the negative regulation of hrp genes in Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2011, 319:58-64. [46] Liu Y, Long J, Shen D, et al.Xanthomonas oryzae pv. oryzae requires H-NS-family protein XrvC to regulate virulence during rice infection[J]. FEMS Microbiol Lett, 2016, 363(10). doi:10. 1093/femsle/fnw067. [47] Chao N, Wei K, Chen Q, et al.The rsmA-like gene rsmAXcc of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis[J]. Mol Plant Microbe Interact, 2008, 21:411-423. [48] Zhu P, Zhao S, Tang J, Feng J.The rsmA-like gene rsmA(Xoo)of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor[J]. Mol Plant Pathol, 2011, 12:227-37. [49] Ikawa Y, Tsuge S.The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2016, 363(10). doi:10. 1093/femsle/fnw071. [50] Guo W, Zou L, Li Y, et al.Fructose-bisphosphate aldolase exhibits functional roles between carbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola[J]. PLoS One, 2012, 7:e31855. [51] Rashid M, Ikawa Y, Tsuge S.GamR, the LysR-type galactose metabolism regulator, regulates hrp gene expression via transcriptional activation of two key hrp regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae[J]. Appl Environ Microbiol, 2016, 82:3947-58. [52] 管文静, 吴茂森, 何晨阳. c-di-GMP信号途径对细菌致病性的调控作用[J]. 微生物学通报, 2009, 36:427-431. [53] 薛丁榕, 田芳, 李海云, 等. 水稻白叶枯病菌第二信使c-di-GMP代谢酶基因的预测和分析[J]. 生物技术通报, 2015 (11):131-138. [54] 杨凤环, 田芳, 陈华民, 等. 病原细菌受体介导的c-di-GMP信号传导及其调控机制[J]. 植物保护, 2017, 43:9-14. [55] Yang F, Tian F, Sun L, et al.A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2012, 25:1361-1369. [56] 梁士敏, 杨凤环, 管文静, 等. 水稻白叶枯病菌EAL结构域蛋白VieAxoo基因缺失突变和功能分析[J]. 微生物学报, 2011, 51:29-34. [57] Yang F, Qian S, Tian F, et al.The GGDEF-domain protein GdpX1 attenuates motility exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae[J]. J Appl Microbiol, 2016, 120:1646-1657. [58] 李潇桐, 杨凤环, 梁士敏, 等. 水稻白叶枯病菌毒性表达的负调控因子PXO_02944的分子鉴定[J]. 中国农业科学, 2014, 47:2563-2570. [59] Yang F, Tian F, Chen H, et al.The Xanthomonas oryzae pv. oryzae PilZ-domain proteins function differentially in cyclic di-GMP binding and regulation of virulence and motility[J]. Appl Environ Microbiol, 2015, 81:4358-4367. [60] Yang F, Tian F, Li X, et al.The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2014, 27:578-589. |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[4] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[5] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[6] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[7] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[8] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[9] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[10] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
[11] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[12] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[13] | YUAN Xing, GUO Cai-hua, LIU Jin-ming, KANG Chao, QUAN Shao-wen, NIU Jian-xin. Genome-wide Identification of CONSTANS-Like Family Genes and Expression Analysis in Wanlut [J]. Biotechnology Bulletin, 2022, 38(9): 167-179. |
[14] | GUO Bin-hui, SONG Li. Transcription of Ethylene Biosynthesis and Signaling Associated Genes in Response to Heterodera glycine Infection [J]. Biotechnology Bulletin, 2022, 38(8): 150-158. |
[15] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||