[1]邵济波, 唐茜, 周晓兰, 等. 四川引种安吉白茶主要生化成分分析[J]. 食品科学, 2012, 33(16):179-183. [2] 郭桂义, 胡孔峰, 袁丁. 信阳毛尖茶的化学成分[J]. 食品科技, 2006, 31(9):298-301. [3] 赵洋, 杨培迪, 刘振, 等. 高氨基酸黄金茶种质资源筛选鉴定[J]. 茶叶通讯, 2017, 44(3):13-16. [4]马林龙, 顾辰辰, 邓威威, 等. 大别山野生油茶中茶氨酸检测与茶氨酸合成酶基因克隆[J]. 广西植物, 2015, 35(1):92-98. [5]Kakuda T. Neuroprotective effects of the green tea components theanine and catechins[J]. Biol Pharm Bull, 2002, 25(12):1513-1518. [6]Kimura K, et al. L-Theanine reduces psychological and physiological stress responses[J]. Biol Psychol, 2007, 74(1):39-45. [7]Shimbo M, et al. Green tea consumption in everyday life and mental health[J]. Public Health Nutr, 2005, 8(8):1300-1306. [8]Hindmarch I, Rigney U, Stanley N, et al. A naturalistic investigation of the effects of day-long consumption of tea, coffee and water on alertness, sleep onset and sleep quality[J]. Psychoparmacology(Berl), 2000, 149:203-216. [9]杨亚军, 陈明, 王新超, 等. 特异优质茶树新品种‘中黄1号’选育研究[J]. 中国茶叶, 2014(9):8-9. [10]张湘生, 等. 特早生高氨基酸优质绿茶茶树新品种保靖‘黄金茶1号’选育研究[J]. 茶叶通讯, 2012, 39(3):11-16. [11] 金孝芳, 等. 6个高氨基酸茶树品种(系)主要生化成分分析[J]. 茶叶学报, 2017, 58(2)58-62. [12]Sánchez B, Ruiz L, et al. Omics for the study of probiotic microorganisms[J]. Food Res Int, 2013, 54(1):1061-1071. [13]苏小琴, 马燕, 杨秀芳, 等. 组学技术在茶学研究中的应用研究进展[J]. 食品工业科技, 2017, 38(18):333-340. [14]吴文静, 李志强, 柯云玲, 等. 组学技术在白蚁研究中的应用[J]. 环境昆虫学报, 2015, 37(4):883-893. [15]孔德康, 王红旗, 许 洁, 等. 基因组学、蛋白质组学和代谢组学在微生物降解PAHs中的应用[J]. 生物技术通报, 2017, 33(10):46-51. [16]Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63. [17]Li N, Yang Y, Ye J, et al. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2):253-262. [18]李娜娜, 等. 茶树品种福鼎大白茶和小雪芽叶片基因转录组研究[J]. 江苏农业学报, 2012, 28(5):974-978. [19]李春芳. 茶树类黄酮等次生代谢产物的合成及基因的表达分析[D]. 杭州:中国农业科学院, 2016. [20]Wang L, Yue C, Cao H, et al. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biol, 2014, 14:352. [21]Liu G, Han Z, Feng L, et al. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production[J]. Scientific Reports, 2017, 7:45062. [22]Zhang Q, Liu M, Ruan J. Integrated transcriptome and metabolic analyses reveals novel insights into free amino acid metabolism in Huangjinya tea cultivar[J]. Front Plant Sci, 2017, 8:291. [23]李娟, 等. ‘安吉白茶’抑制消减杂交cDNA文库的构建及初步分析[J]. 中国农学通报, 2011, 27(4):96-101. [24]Yuan L, Xiong L, Deng T, et al. Comparative profiling of gene expression in Camellia sinensis L. cultivar AnJiBaiCha leaves during periodic albinism[J]. Gene, 2015, 561(1):23-29. [25]程晓梅, 黄建安, 刘仲华, 等. 茶树蛋白质组学研究进展[J]. 湖南农业科学, 2014, 23:28-31. [26]张红亮, 王道文, 张正斌. 利用转录组学和蛋白质组学技术揭示小麦抗旱分子机制的研究进展[J]. 麦类作物学报, 2016, 36(7):878-887. [27]李勤. 安吉白茶新梢生育期间蛋白质组学及茶氨酸体外生物合成的研究[D]. 长沙:湖南农业大学, 2011. [28]程晓梅. 安吉白茶阶段性返白过程中叶绿体蛋白质组学研究[D]. 长沙:湖南农业大学, 2015. [29]Sumner L, Mendes P, Dixon R. Plant metabolomics:large-scale phytochemistry in the functional genomics era[J]. Phytochemistry, 2003, 62(6):817-836. [30]Li C, Yao M, Ma C, et al. Differential metabolic profiles during the albescent stages of ‘Anji Baicha’(C. sinensis)[J]. PLoS One, 2015, 10:e0139996. [31]Feng L, Gao M, Hou R, et al. Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry, 2014, 155(11):98-104. [32]Xia E, Zhang H, Sheng J, et al. The Tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6):866-877. |