[1]Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regulation, 1999, 29(1-2):47-76. [2]Artus NN, Uemura M, Steponkus PL, et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proc Nat Acad Sci, 1996, 93(23):13404-13409. [3]Thomashow MF. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Biology, 1999, 50(1):571-599. [4]Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress[J]. Biochemical Journal, 2005, 388(1):151-157. [5]Reyes JL, Rodrigo MJ, Colmenero-Flores JM, et al. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro[J]. Plant, Cell & Environment, 2005, 28(6):709-718. [6]Chakrabortee S, Meersman F, Schierle G S K, et al. Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance[J]. Proc Nat Acad Sci, 2010, 107(37):16084-16089. [7]Kanuru M, Aradhyam GK. Chaperone-like activity of calnuc prevents amyloid aggregation[J]. Biochemistry, 2017, 56(1):149-159. [8]Battaglia M, Olvera-Carrillo Y, Garciarrubio A, et al. The enigmatic LEA proteins and other hydrophilins[J]. Plant Physiol, 2008, 148(1):6-24. [9]He S, Tan L, Hu Z, et al. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L.[J]. Mol Gene Genomics, 2012, 287(1):39-54. [10]Jaspard E, Hunault G. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain[J]. PLoS One, 2014, 9(10):e109570. [11]Dang NX, Popova AV, Hundertmark M, et al. Functional characterization of selected LEA proteins from Arabidopsis thaliana in yeast and in vitro[J]. Planta, 2014, 240(2):325-336. [12]Ciccarelli FD, Bork P. The WHy domain mediates the response to desiccation in plants and bacteria[J]. Bioinformatics, 2004, 21(8):1304-1307. [13]Makarova KS, Aravind L, Wolf YI, et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics[J]. Microbiology and Molecular Biology Reviews, 2001, 65(1):44-79. [14]Jiang S, Wang J, Liu X, et al. DrwH, a novel WHy domain-containing hydrophobic LEA5C protein from Deinococcus radiodurans, protects enzymatic activity under oxidative stress[J]. Scientific Reports, 2017, 7(1):9281. [15]Yuan M, Zhang W, Dai S, et al. Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium[J]. Int J Syst Evol Microbiol, 2009, 59(6):1513-1517. [16]Dahl JU, Koldewey P, Salmon L, et al. HdeB functions as an acid-protective chaperone in bacteria[J]. J Biol Chem, 2015, 290(1):65-75. [17]Liu Y, Wang L, Jiang S, et al. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast[J]. Plant Physiology and Biochemistry, 2014, 84:22-31. [18]Wu Y, Liu C, Kuang J, et al. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza[J]. Protoplasma, 2014, 251(5):1191-1199. [19]Wang H, Wu Y, Yang X, et al. SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza[J]. Protoplasma, 2017, 254(2):685-696. [20]Haaning S, Radutoiu S, Hoffmann S V, et al. An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro[J]. J Biol Chem, 2008, 283(45):31142-31152. |