Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (4): 16-23.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0116
Previous Articles Next Articles
ZHAO Ning, CHEN Shuang-lin
Received:
2018-02-02
Online:
2018-04-20
Published:
2018-05-04
ZHAO Ning, CHEN Shuang-lin. Research Progress on Genetic Diversity of Shiraia bambusicola,Biosynthesis and Anticancer Activity of Hypocrellin[J]. Biotechnology Bulletin, 2018, 34(4): 16-23.
[1] 钟树荣, 赵海, 李安明, 等. 一种尚待开发的中药——竹黄[J]. 中草药, 2002, 33(4):372-374. [2] Kishi T, Tahara S, Taniguchi N, et al.New perylenequinones from Shiraia bambusicola[J]. Planta Medica, 1991, 57(4):376-379. [3] Fang LZ, Chen Q, Shao HJ, et al.Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola[J]. Cheminform, 2010, 37(50):351-354. [4] 林海萍. 竹黄菌(Shiraia bambusicola)生物学性状及其人工培养技术研究[D]. 杭州:浙江大学, 2002. [5] 赵丹, 梁宗琦. 竹黄的分离培养研究进展[J]. 菌物研究, 2005, 3(1):53-57. [6] 赖广辉, 傅乐意. 竹黄主要寄主植物的研究[J]. 中国野生植物资源, 2000(1):8-11. [7] Liu YX, Zhu Y, Huang YH, et al.Research progress of bamboo fungi and biology of Shiraia bambusicola[J]. 贵州农业科学, 2010, 38(12):150-154. [8] 陈灵芝, 马克平. 生物多样性科学:原理与实践[M]. 上海:上海科学技术出版社, 2001. [9] 赵淑清, 武维华. DNA分子标记和基因定位[J]. 生物技术通报, 2000, 7(6):1-4. [10] 余知和, 曾昭清. DNA分子标记技术在真菌系统学研究中的应用及影响[J]. 菌物学报, 2013, 32(1):1-14. [11] Yin YG, Liu Y, Li HM, et al.Genetic diversity of Pleurotus pulmo-narius revealed by RAPD, ISSR, and SRAP fingerprinting[J]. Current Microbiology[J]. 2014, 68(3):397-403. [12] 张瑞颖, 胡丹丹, 左雪梅, 等. 分子标记技术在食用菌遗传育种中的应用[J]. 中国食用菌, 2011, 30(1):3-7. [13] 边银丙, 宋小亚. 几种新型DNA分子标记及其在食用菌研究中的应用[J]. 食用菌学报, 2006, 13(1):78-81. [14] 范英, 钟成刚, 闫淑珍, 等. 竹黄菌基因组RAPD分子标记体系的建立[J]. 生物技术, 2010, 20(4):23-26. [15] 范英, 钟成刚, 程洁, 等. 华东竹黄菌不同居群遗传分化的RAPD分析[J]. 基因组学与应用生物学, 2009, 28(5):889-895. [16] 陈艺萌, 竹黄(Shiraia bambusicola P. Hennings)生物学特性与遗传多样性研究[D]. 昆明:昆明理工大学, 2014. [17] Qi SS, Fan Y, Gong ZN, et al.Genetic diversity of Shiraia bambusicola from East China assessed using ISSR markers[J]. Biochemical Systematics & Ecology, 2015, 59:239-245. [18] 刘臻, 鲁双庆, 匡刚桥, 等. 湘江野鲤养殖群体和自然群体遗传多样性的微卫星分析[J]. 生态学杂志, 2007, 26(7):1074-1079. [19] 傅乃武, 安静仪. 竹红菌甲素对肝癌细胞线粒体和微粒体的光动力效应[J]. 中国药理学报, 1989(4):371-373. [20] Hirayama J, Ikebuchi K, Abe H, et al.Photoinactivation of virus infectivity by hypocrellin A[J]. Photochemistry & Photobiology, 1997, 66(5):697-700. [21] Zhang J, Cao EH, Li JF, et al.Photodynamic effects of hypocrellin A on three human malignant cell lines by inducing apoptotic cell death[J]. J Photochem Photobiol B, 1998, 43(2):106-111. [22] Hudson JB, Zhou J, Chen J, et al.Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus[J]. Photochemistry & Photobiology, 2010, 60(3):253-255. [23] 王志津, 崔莲, 张金萍, 等. 竹红菌甲素脂质体对体外培养肿瘤HeLa细胞的光灭活作用[J]. 中华临床医师杂志·电子版, 2012, 6(6):54-56. [24] Ali SM, Olivo M.Efficacy of hypocrellin pharmacokinetics in phototherapy[J]. Int J Oncol, 2002, 21(6):1229-1237. [25] Li L, Chen Y, Shen J, et al.New long-wavelength perylenequinon-es:synthesis and phototoxicity of hypocrellin B derivatives[J]. Biochim Biophys Acta, 2000, 1523(1):6-12. [26] 赵红霞, 许以明, 张志义. 竹红菌乙素及其溴代物对DNA结构光敏损伤的Raman光谱[J]. 科学通报, 1998, 43(9):955-961. [27] 陈双林, 祁姗姗, 闫淑珍. 一种水溶性竹红菌素PLGA纳米粒及其制备方法:中国, CN201410198946. 3[P].2014-07-23. [28] Bai D, Xia X, Yow CMN, et al.Hypocrellin B-encapsulated nanoparticle-mediated rev-caspase-3 gene transfection and photodynamic therapy on tumor cells[J]. European Journal of Pharmacology, 2011, 650(2):496-500. [29] Chen HX, Yang ZF, Zou XB, et al.Photodynamic efficacy of liposome-delivered hypocrellin B in microvascular endothelial cells in vitro and chicken combs in vivo:a potential photosensitizer for port wine stain[J]. Laser Physics, 2013, 23(2):025605. [30] Cao EH, Xin SM, Cheng LS.DNA Damage induced by hypocrellin-A photosensitization[J]. Int J Radiat Biol, 1992, 61(2):213-219. [31] 王家珍, 李景福, 张秀珍. 竹红菌甲素对体外培养细胞光敏作用的实验研究[J]. 实验生物学报, 1994(2):165-173. [32] Ali SM, Chee SK, Yuen GY, et al.Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells[J]. J Photochem Photobiol B, 2001, 65(1):59-73. [33] Deininger MH, Weinschenk T, Morgalla MH, et al.Release of regulators of angiogenesis following hypocrellin-A and -B photodynamic therapy of human brain tumor cells[J]. Biochem Biophys Res Commun, 2002, 298(4):520-530. [34] 陈洁, 藤利荣, 郑克岩, 等. 竹红菌甲素诱导人黑色素瘤A375-S2细胞凋亡的分子机制[J]. 中国药学杂志, 2005, 39(6):431-433. [35] 尚立群, 周乃康, 顾瑛, 等. 竹红菌乙素-PDT与血卟啉衍生物-PDT对食管癌细胞杀伤效应的比较研究[J]. 中华肿瘤防治杂志, 2005, 12(15):1139-1142. [36] 尚立群, 周乃康, 顾瑛, 等. 竹红菌乙素-光动力疗法对比杀伤经顺铂诱导耐药及非耐药肺癌细胞系的实验研究[J]. 转化医学杂志, 2006, 19(2):68-72. [37] 黄乃艳, 顾瑛, 刘凡光, 等. 竹红菌素B的两种剂型对小鼠S180肉瘤的光动力作用观察[J]. 中国激光医学杂志, 2007, 16(1):8-12. [38] Estey EP, et al.Hypocrellins as photosensitizers for photodynamic therapy:a screening evaluation and pharmacokinetic study[J]. Cancer Chemother Pharmacol, 1996, 37(4):343-350. [39] Xu S, Shen C, Zhang M, et al.Butylamino-demethoxy-hypocrellins and photodynamic therapy decreases human cancer in vitro and in vivo[J]. Biochim Biophys Acta, 2001, 1537(3):222-232. [40] Yang HY, Zhang WG, Ma LP, et al.An approach to enhancing the phototoxicity of a novel hypocrellin congener to MGC803 cells[J]. Dyes & Pigments, 2001, 51(2):103-110. [41] Zhou Z, et al.Role of calcium in phototoxicity of 2-butylamino-2-demethoxy-hypocrellin A to human gastric cancer MGC-803 cells[J]. Biochim Biophys Acta, 2003, 1593(2):191-200. [42] 刘子文. 竹红菌素衍生物光动力作用诱导人胰腺癌细胞Capan-1凋亡机理的实验研究[D], 北京:中国协和医科大学, 2003. [43] 刘子文, 赵玉沛, 廖泉, 等. 2-丁胺-2-去甲氧基竹红菌乙素光动力作用诱导Capan-1细胞凋亡与线粒体损伤的关系[J]. 中华外科杂志, 2006, 44(1):36-39. [44] Zhou L, Zhou JH, Dong C, et al.Water-soluble hypocrellin A nanoparticles as a photodynamic therapy delivery system[J]. Dyes & Pigments, 2009, 82(1):90-94. [45] Gao L, Fei J, Zhao J, et al.Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro[J]. ACS Nano, 2012, 6(9):8030-8040. [46] Jin S, Zhou L, Gu Z, et al.A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells[J]. Nanoscale, 2013, 5(23):11910-11918. [47] Qi SS, et al.Preparation and evaluation of hypocrellin A loaded poly(lactic-co-glycolic acid)nanoparticles for photodynamic therapy[J]. RSC Adv, 2014, 4(75):40085-40094. [48] Lin X, Yan SZ, Qi SS, et al.Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of hypocrellin A[J]. Frontiers in Pharmacology, 2017, 8:815. [49] 李廷慧. 血管靶向光动力治疗药竹红菌乙素脂质体的药效学、药代学及光毒性研究[D]. 北京:中国人民解放军医学院, 2012. [50] Guo LY, Yan SZ, Li Q, et al.Poly(lactic-co-glycolic)acid nanoparticles improve oral bioavailability of hypocrellin A in rat[J]. RSC Advances, 2017, 7(67):42073-42082. [51] 常魁敏, 邓华祥, 管政兵, 等. 竹黄菌中一个聚酮合酶基因的初步研究[J]. 生物技术, 2014, (5):1-4. [52] Deng H, Gao R, et al.An efficient polyethylene glycol-mediated tra- nsformation system of lentiviral vector in Shiraia bambusicola[J]. Process Biochemistry, 2016, 51(10):1357-1362. [53] Deng H, Gao R, Liao X, et al.Characterization of a major facilitator superfamily transporter in Shiraia bambusicola[J]. Research in Microbiology, 2017, 168(7):664-672. [54] Lei XY, Zhang MY, Ma YJ, et al.Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola[J]. J Ind Microbiol Biotechnol, 2017, 44(10):1415-1429. [55] Deng H, Gao R, Liao X, et al.Genome editing in Shiraia bambusicola using CRISPR-Cas9 system[J]. Journal of Biotechnology, 2017, 259:228-234. [56] Zhao N, Lin X, Qi SS, et al.De novo transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of hypocrellin A[J]. International Journal of Molecular Sciences, 2016, 17(3):311-324. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | WANG Ling, ZHUO Shen, FU Xue-sen, LIU Zi-xuan, LIU Xiao-rong, WANG Zhi-hui, ZHOU Ri-bao, LIU Xiang-dan. Advances in the Biosynthetic Pathways and Related Genes of Lotus Alkaloids [J]. Biotechnology Bulletin, 2023, 39(7): 56-66. |
[3] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[4] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[5] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[6] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[9] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[10] | YANG Rui-xian, LIU Ping, WANG Zu-hua, RUAN Bao-shuo, WANG Zhi-da. Analysis of Antimicrobial Active Metabolites from Antagonistic Strains Against Fusarium solani [J]. Biotechnology Bulletin, 2022, 38(2): 57-66. |
[11] | YAO Yu, GU Jia-jun, SUN Chao, SHEN Guo-an, GUO Bao-lin. Advances in Plant Flavonoids UDP-glycosyltransferase [J]. Biotechnology Bulletin, 2022, 38(12): 47-57. |
[12] | XU Yuan-yuan, ZHAO Guo-chun, HAO Ying-ying, WENG Xue-huang, CHEN Zhong, JIA Li-ming. Reference Genes Selection and Validation for RT-qPCR in Sapindus mukorossi [J]. Biotechnology Bulletin, 2022, 38(10): 80-89. |
[13] | LIU Xue-dan, YANG Meng, ZHANG Jing, ZHAO Dong-xu. Effects of Glucose-xylose Co-utilization on the Synthesis of D-1,2,4-Butanetriol by Recombinant Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(9): 171-179. |
[14] | ZHOU Zheng, LI Qing, CHEN Wan-sheng, ZHANG Lei. Research Strategies of Natural Products Biosynthesis Pathways and Key Enzymes in Medicinal Plants [J]. Biotechnology Bulletin, 2021, 37(8): 25-34. |
[15] | LIANG Zhen-ting, TANG Ting. Effects of Endophytes on Biosynthesis of Secondary Metabolites and Stress Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(8): 35-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||