Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 32-40.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0877
Previous Articles Next Articles
QIAO Long-liang, PANG Jian-hu, DANG Chen-yang, HUANG Hai-long, ZHU Peng
Received:
2017-10-19
Online:
2018-05-26
Published:
2018-06-07
QIAO Long-liang, PANG Jian-hu, DANG Chen-yang, HUANG Hai-long, ZHU Peng. CRISPR/Cas9 Genome Editing Technology and Its Application in Streptomyces[J]. Biotechnology Bulletin, 2018, 34(5): 32-40.
[1] Lucas X, Senger C, Erxleben A, et al.StreptomeDB:a resource for natural compounds isolated from Streptomyces species[J]. Nucleic Acids Res, 2013, 41(Database issue):1130-1136. [2] Campo N, Daveranmingot ML, Leenhouts K, et al.Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis[J]. Appl Environ Microbiol, 2002, 68(5):2359-2367. [3] Oliynyk M, Stark CB, Bhatt A, et al.Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization[J]. Mol Microbiol, 2003, 5:1179-1190. [4] Zhou M, Jing X, Xie P, et al.Sequential deletion of all the polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a 900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor[J]. FEMS Microbiol Lett, 2012, 333(2):169-179. [5] Gust B, Challis GL, Fowler K, et al.PCR-Targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin[J]. Proc Natl Acad Sci USA, 2003, 100(4):1541-1546. [6] Sternberg N, Hamilton D.Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites[J]. J Mol Biol, 1981, 150(4):467-486. [7] Volkert FC, Wilson DW, Broach JR.Deoxyribonucleic acid plasmids in yeasts[J]. Microbiol Rev, 1989, 53(3):299-317. [8] Sauer B, Mcdermott J.DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages[J]. Nucleic Acids Res, 2004, 20:6086-6095. [9] Raynal A, Karray F, Tuphile K, et al.Excisable cassettes:New tools for functional analysis of Streptomyces genomes[J]. Appl Environ Microbiol, 2006, 72(7):4839-4844. [10] Le C, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 6121:819-823. [11] Cheng AW, Wang H, Yang H, et al.Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system[J]. Cell Res, 2013, 23(10):1163-1171. [12] Siegl T, Luzhetskyy A.Actinomycetes genome engineering approaches[J]. Antonie Van Leeuwenhoek, 2012, 102(3):503-516. [13] Fedoryshyn M, et al.Marker removal from actinomycetes genome using Flp recombinase[J]. Gene, 2008, 419(1-2):43-47. [14] Huang H, Zheng G, Jiang W, et al.One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces[J]. Acta Biochimica et Biophysica Sinica, 2015, 47(4):231-243. [15] Cobb RE, Wang Y, Zhao H.High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. Acs Synthetic Biology, 2015, 4(6):723-728. [16] Leskiw BK, et al.The use of a rare codon specifically during development?[J]. Mol Microbiol, 1991, 12:2861-2867. [17] Tong Y, Charusanti P, Zhang L, et al.CRISPR-Cas9 Based engineering of actinomycetal genomes[J]. Acs Synthetic Biology, 2015, 4(9):1020-1029. [18] Bowater R, Doherty AJ.Making ends meet:repairing breaks in bacterial DNA by non-homologous end-joining[J]. PLoS Genet, 2006, 2(2):e8. [19] Dubeau MP, Ghinet MG, Jacques PE, et al.Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria[J]. Appl Environ Microbiol, 2009, 75(4):1211-1214. [20] Hu Z, Shishi W, Wei X, et al.Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm)combined system[J]. Appl Microbiol Biotechnol, 2015, 24:10575-10585. [21] 雍德祥. 维吉尼亚链霉菌IBL14中的CRISPR-Cas9系统及其基因编辑方法[D]. 合肥:安徽大学, 2016. [22] Shima J, et al.Induction of actinorhodin production by rpsL(enco-ding ribosomal protein S12)mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2)[J]. J Bacteriol, 1996, 178(24):7276-7284. [23] Qin Z, et al.Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants[J]. Chem Sci, 2017, 8(4):3218-3227. [24] Scherlach K, Hertweck C.Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining[J]. Org Biomol Chem, 2006, 4(18):3517-3520. [25] Craney A, Ozimok C, et al.Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism[J]. Chem Biol, 2012, 19(8):1020-1027. [26] Imai Y, Sato S, et al.Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp[J]. Appl Environ Microbiol, 2015, 11:3869-3879. [27] Onaka H, Mori Y, Igarashi Y, et al.Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species[J]. Appl Environ Microbiol, 2011, 77(2):400-406. [28] Moody SC.Microbial co-culture:harnessing intermicrobial signaling for the production of novel antimicrobials[J]. Future Microbiol, 2014, 9(5):575-578. [29] Martin R, Sterner O, et al.ChemInform abstract:collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain[J]. J Antibiotics, 2001, 54(3):239-249. [30] Gomezescribano JP, Bibb MJ.Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters[J]. Microbial Biotechnology, 2011, 4(2):207-215. [31] Laureti L, Aigle, Khosla C.Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proc Natl Acad Sci USA, 2011, 108(15):6258-6263. [32] Zhou Z, Xu Q, Bu Q, et al.Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis[J]. Chembiochem, 2015, 16(3):496-502. [33] Zhang MM, Wong FT, Wang Y, et al.CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nat Chem Biol, 2017. doi:10.1038/nchembio.2341. [34] Weber, Tilmann, Charusanti, et al. Metabolic engineering of antibiotic factories:new tools for antibiotic production in actinomycetes[J]. Trends Biotechnol, 2015, 33(1):15-26. [35] Kleinstiver BP, Prew MS, Tsai SQ, et al.Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561):481-485. [36] Kleinstiver BP, Prew MS, Tsai SQ, et al.Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12):1293-1298. [37] Hirano S, Nishimasu H, Ishitani R, et al.Structural basis for the altered PAM specificities of engineered CRISPR-Cas9[J]. Mol Cell, 2016, 61(6):886-894. [38] Hirano H, Gootenberg JS, Horii T, et al.Structure and engineering of Francisella novicida Cas9[J]. Cell, 2016, 5:950-961. [39] Mojica FJ, Díez-Villaseñor C, García-Martínez J, et al.Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3):733-740. [40] Jinek M, Jiang F, Taylor DW, et al.Structures of Cas9 endonucle-ases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176):1247997. [41] Jiang F, Zhou K, Ma L, et al.STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition[J]. Science, 2015, 348(6242):1477-1481. [42] Anders C, Bargsten K, Jinek M.Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9[J]. Mol Cell, 2016, 61(6):895-902. [43] Horvath P, Romero DA, Coute-Monvoisin AC, et al.Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4):1401-1412. [44] Fonfara I, Le RA, Chylinski K, et al.Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems[J]. Nucleic Acids Res, 2014, 42(4):2577-2590. [45] Ran FA, et al.In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. [46] Nishimasu H, Cong L, Yan WX, et al.Crystal Structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 5:1113-1126. [47] Zhang Y, Heidrich N, Ampattu BJ, et al.Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis[J]. Mol Cell, 2013, 50(4):488-503. [48] Yamada M, et al.Crystal structure of the minimal Cas9 from Cam-pylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell, 2017, 65(6):1109-1121. [49] Ramalingam S, Annaluru N, Chandrasegaran S.A CRISPR way to engineer the human genome[J]. Genome Biol, 2013, 14(2):1-4. [50] Schaefer KA, et al.Unexpected mutations after CRISPR-Cas9 editing in vivo[J]. Nat Methods, 2017, 14(6):547-548. [51] Zhu LJ, Lawrence M, Gupta A, et al.GUIDEseq:a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases[J]. BMC Genomics, 2017, 18(1):379-388. [52] Park J, Childs L, Kim D, et al.Digenome-seq web tool for profiling CRISPR specificity[J]. Nat Methods, 2017, 14(6):548-549. [53] Wang X, Wang Y, Wu X, et al.Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors[J]. Nat Biotechnol, 2015, 33(2):175-178. [54] Nicola C, Abhishek M, Joao SM, et al.Nucleotide-resolution DNA double-strand breaks mapping by next-generation sequencing[J]. Nat Methods, 2013, 10(4):361-365. [55] Cameron P, Fuller CK, Donohoue PD, et al.Mapping the genomic landscape of CRISPR-Cas9 cleavage[J]. Nat Methods, 2017, 14(6):600-606. [56] Tsai SQ, Nguyen NT, Malagon-Lopez J, et al.CIRCLE-seq:a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets[J]. Nat Methods, 2017, 14(6):607-614. [57] Heinemann M, Panke S.Synthetic biology--putting engineering into biology[J]. Bioinformatics, 2006, 22(22):2790-2799. [58] Romero-Rodríguez A, Robledo-Casados I, Sánchez S.An overview on transcriptional regulators in Streptomyces[J]. Biochim Biophys Acta, 2015, 1849(8):1017-1039. |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[3] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[6] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[7] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[8] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[9] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[10] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[11] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[12] | TANG Bi-yao FU Xue-peng. Sequencing Analysis of the Whole Genome of Streptomyces sp. FXP04 [J]. Biotechnology Bulletin, 2023, 39(10): 268-280. |
[13] | WANG Xin-yi, WANG Xiao-qian, WANG Hong-jun, CHAO Yue-hui. Screening, Expression, and Validation of Nanobodies with FLAG Tag [J]. Biotechnology Bulletin, 2023, 39(10): 323-331. |
[14] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[15] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||