Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (5): 41-47.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0413
Previous Articles Next Articles
TANG Bo, SUN Zhao-lin, DAI Yun-ping
Received:
2018-05-03
Online:
2018-05-26
Published:
2018-06-07
TANG Bo, SUN Zhao-lin, DAI Yun-ping. Research Progress of Gene Editing Technology on Cattle[J]. Biotechnology Bulletin, 2018, 34(5): 41-47.
[1] McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature, 2000, 405(6790):1066-1069. [2] Dai Y, Vaught TD, Boone J, et al.Targeted disruption of the alpha1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3):251-255. [3] Lai L, Kolber-Simonds D, Park KW, et al.Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092. [4] Kuroiwa Y, Kasinathan P, Matsushita H, et al.Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle[J]. Nat Genet, 2004, 36(7):775-780. [5] Sendai Y, Sawada T, Urakawa M, et al.Alpha1, 3-Galactosyltransfe-rase-gene knockout in cattle using a single targeting vector with loxP sequences and cre-expressing adenovirus[J]. Transplantation. 2006, 81(5):760-766. [6] Richt JA, Kasinathan P, Hamir AN, et al.Production of cattle lacking prion protein[J]. Nat Biotechnol, 2007, 25(1):132-138. [7] Wang S, Zhang K, Ding F, et al.A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle[J]. J Biotechnol, 2013, 163:377-385. [8] Sano A, Matsushita H, Wu H, et al.Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle[J]. PLoS One, 2013, 8:e78119. [9] Matsushita H, Sano A, Wu H, et al.Triple immunoglobulin gene knockout transchromosomic cattle:bovine lambda cluster deletion and its effect on fully human polyclonal antibody production[J]. PLoS One, 2014, 9:e90383. [10] Wang Z.Genome engineering in cattle:recent technological advancements[J]. Chromosome Res, 2015, 23(1):17-29. [11] Kim YG, Cha J, Chandrasegaran S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci USA, 1996, 93(3):1156-1160. [12] IsalanM, ChooY, KlugA. Synergy between adjacent zinc fingers in sequence-specific DNA recognition[J]. Proc Natl Acad Sci USA, 1997, 94:5617-21. [13] Klug A.The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation[J]. Q Rev Biophys, 2010, 43(1):1-21. [14] Haber JE.Partners and pathways repairing a double-strand break[J]. Trends Genet. 2000, 16:259-264. [15] Bibikova M, Carroll D, Segal DJ, et al.Stimulation of homologous recombination through targeted cleavage by chimeric nucleases[J]. Mol Cell Biol, 2001, 21(1):289-297. [16] Yu S, Luo J, Song Z, et al.Highly efficient modification of beta-lactoglobulin(BLG)gene via zinc-finger nucleases in cattle[J]. Cell Res. 2011, 21:1638-1640. [17] Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N(2014)Efficient generation of myostatin(MSTN)biallelic mutations in cattle using zinc finger nucleases[J]. PLoS One, 2014, 9(4):e95225. [18] Liu X, Wang Y, Guo W, et al.Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013, 4:2565. [19] Liu X, Wang Y, Tian Y, et al.Generation of mastitis resistance in cows by targeting human lysozyme gene to beta-casein locus using zinc-finger nucleases[J]. Proc Biol Sci, 2014, 281:20133368. [20] Boch J, Scholze H, Schornack S, et al.Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326, 1509-1512. [21] Moscou M. J.& Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326, 1501. [22] Christian M, Cermak T, Doyle EL, et al.Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2):757-761. [23] Li T. Huang S, Jiang WZ, et al.TAL nucleases(TALNs):hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain[J]. Nucleic Acids Res. 2011, 39(1):359-372. [24] Carlson DF, Tan W, Lillico SG, et al.Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci USA, 2012, 109:17382-17387. [25] Tan W, Carlson DF, Lancto CA, et al.Efficient nonmeiotic allele introgression in livestock using custom endonucleases[J]. Proc Natl Acad Sci USA, 2013, 110:16526-16531. [26] Proudfoot C, Carlson DF, Huddart R, et al.Genome edited sheep and cattle[J]. Transgenic Res, 2015, 24:147-153. [27] Moghaddassi S, Eyestone W, Bishop CE.TALEN-mediated modification of the bovine genome for large-scale production of human serum albumin[J]. PLoS One, 2014, 9(2):e89631. [28] Wu H, Wang Y, Zhang Y, et al.TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proc Natl Acad Sci USA, 2015;112(13):E1530-1539. [29] Carlson DF, Cheryl A, Lancto, et al. Production of hornless dairy cattle from genome-edited cell lines[J]. Nature Biotechnology, 2016, 34, 479-481. [30] Heo Y, Quan X, Xu Y, et al.CRISPR/Cas9 nuclease-mediated gene knock-in in bovine pluripotent stem cells and embryos[J]. Stem Cells Dev, 2015, 24(3):393-402. [31] Jeong YH, Kim YJ, Kim EY, et al.Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination[J]. Zygote, 2016, 24(3):442-456. [32] Bevacqua RJ, Fernandez-Martín R, Savy V, et al.Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J]. Theriogenology, 2016, 86(8):1886-1896. [33] Gao Y, Wu H, Wang Y, et al.Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biol, 2017, 18:13. [34] Ikeda M, Matsuyama S, Akagi S, et al.Correction of a Disease Mutation using CRISPR/Cas9-assisted Genome Editing in Japanese Black Cattle[J]. Sci Rep, 2017, 7(1):17827. [35] Wang S, Zhang K, Ding F, et al.A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle[J]. J Biotechnol, 2013, 163:377-385. [36] Yang P, Jianwu W, Guochun G, et al. (2008). Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin[J]. PLoS One, 3(10):e3453. [37] Wang J, Yang P, Tang B, et al.Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows[J]. J Dairy Sci, 2008, 91(12):4466-4476. [38] Yang B, Jianwu W, Bo T, et al.Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle[J]. PLoS One, 2011, 6(3):e17593. [39] Wang Y, Ding F, Wang T, et al.Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows[J]. PLoS One, 2017, 12(5):e0176864. [40] Wang M, Sun Z, Yu T, et al.Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows[J]. Sci Rep, 2017, 7(1):10733. [41] Lu D, Liu S, Ding F, et al.Large-scale production of functional human lysozyme from marker-free transgenic cloned cows[J]. Sci Rep, 2016, 6:22947. [42] Ruan J, Xu J, Chen-Tsai RY, Li K.Genome editing in livestock:Are we ready for a revolution in animal breeding industry?[J]. Transgenic Res, 2017, 26(6):715-726. [43] Medugorac I, Seichter D, Graf A, et al.Bovine polledness--an autosomal dominant trait with allelic heterogeneity[J]. PLoS One, 2012;7(6):e39477. [44] Letter for “Request for confirmation that transgene-free, CRISPR-edited mushroom is not a Regulated article”. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-321-01_air_response_signed.pdf. [45] Secretary Perdue Issues USDA Statement on Plant Breeding Inno-vation. https://www.usda.gov/media/press-releases/2018/03/28/secretary-perdue-issues-usda-statement-plant-breeding-innovation. [46] European Court Supports the Softening of CRISPR Gene Editing Rules. https://labiotech.eu/crispr-gene-editing-court/. |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | ZHANG Zu-lin, LIU Fang-fang, ZHOU Qing-niao, ZHAO Rui-qiang, HE Shu-jia, LIN Wen-zhen. Construction and Identification of Huh7 Hepatoma Cell Line with ACE2 Gene Knockout Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(6): 181-188. |
[5] | LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor [J]. Biotechnology Bulletin, 2023, 39(5): 77-91. |
[6] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[7] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[9] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[10] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[11] | GAO Wei-xin, HUANG Huo-qing, ZHAO Jing, ZHANG Xin, YANG Ning, YANG Hao-meng. Construction and Activity Verification of Ribonucleoprotein Complex for Gene Editing [J]. Biotechnology Bulletin, 2022, 38(8): 60-68. |
[12] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[13] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[14] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[15] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||