Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 1-13.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
Previous Articles Next Articles
GAO Xiu-hua, FU Xiang-dong
Received:
2018-05-14
Online:
2018-07-26
Published:
2018-08-01
GAO Xiu-hua, FU Xiang-dong. Research Progress for the Gibberellin Signaling and Action on Plant Growth and Development[J]. Biotechnology Bulletin, 2018, 34(7): 1-13.
[1] Daviere JM, de Lucas M, Prat S. Transcriptional factor interaction:a central step in DELLA function[J]. Curr Opin Genet Dev, 2008, 18:295-303. [2] Sun TP.The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21:R338-345. [3] Vera-Sirera F, Gomez MD, Perez-Amador MA.Chapter 20-DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling[J]. Plant Transcription Factors, 2016:313-328. [4] Hedden P, Thomas SG.Gibberellin biosynthesis and its regulation[J]. Biochem J, 2012, 444:11-25. [5] Silverstone A, Sun T.Gibberellins and the green revolution[J]. Trends Plant Sci, 2000, 5:1-2. [6] Magome H, Nomura T, Hanada A, et al.CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice[J]. Proc Natl Acad Sci USA, 2013, 110:1947-1952. [7] Nomura T, Magome H, Hanada A, et al.Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes[J]. Plant Cell Physiol, 2013, 54:1837-1851. [8] Cowling RJ, Kamiya Y, Seto H, et al.Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis[J]. Plant Physiol, 1998, 117:1195-1203. [9] Regnault T, Daviere JM, Achard P.Long-distance transport of endogenous gibberellins in Arabidopsis[J]. Plant Signal Behav, 2016, 11:e1110661. [10] Binenbaum J, Weinstain R, Shani E.Gibberellin localization and transport in plants[J]. Trends Plant Sci, 2018, 23:410-421. [11] Tal I, Zhang Y, Jorgensen ME, et al.The Arabidopsis NPF3 protein is a GA transporter[J]. Nat Commun, 2016, 7:11486. [12] Saito H, Oikawa T, Hamamoto S, et al.The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis[J]. Nat Commun, 2015, 6:6095. [13] Kanno Y, Oikawa T, Chiba Y, et al.AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J]. Nat Commun, 2016, 7:13245. [14] Peng J, Richards DE, Hartley NM, et al.‘Green revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400:256-261. [15] Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al.Green revolution:a mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416:701-702. [16] Spielmeyer W, Ellis MH, Chandler PM.Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. Proc Natl Acad Sci USA, 2002, 99:9043-9048. [17] Sun T, Gubler F.Molecular mechanism of gibberellin signaling in plant[J]. Annual Review of Plant Biology, 2004, 55:197-223. [18] Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al.GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437:693-698. [19] Xu H, Liu Q, Yao T, et al.Shedding light on integrative GA signaling[J]. Curr Opin Plant Biol, 2014, 21:89-95. [20] Gao XH, Zhang YY, He ZH, et al.Chapter 4:Gibberellins[M]//Li JY, Li CY, Smith SM. Hormone Metabolism & Signaling in Plants. Elsevier, 2017:107-160. [21] Griffiths J, Murase K, Rieu I, et al.Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18:3399-3414. [22] Iuchi S, Suzuki H, Kim YC, et al.Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal[J]. Plant J, 2007, 50:958-966. [23] Nakajima M, Shimada A, Takashi Y, et al.Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J, 2006, 46:880-889. [24] Gallego-Giraldo C, Hu J, Urbez C, et al.Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis[J]. Plant J, 2014, 79:1020-1032. [25] Murase K, Hirano Y, Sun TP, et al.Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456:459-463. [26] Shimada A, Ueguchi-Tanaka M, Nakatsu T, et al.Structural basis for gibberellin recognition by its receptor GID1[J]. Nature, 2008, 456:520-523. [27] Ueguchi-Tanaka M, Matsuoka M.The perception of gibberellins:clues from receptor structure[J]. Curr Opin Plant Biol, 2010:503-508. [28] Nemoto K, Ramadan A, Arimura GI, et al.Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation[J]. Nat Commun, 2017, 8:1004. [29] Boss PK, Thomas MR.Association of dwarfism and floral induction with a grape ‘green revolution' mutation[J]. Nature, 2002, 416:847-850. [30] Olszewski N, Sun TP, Gubler F.Gibberellin signaling biosynthesis catabolism and response pathways[J]. The Plant Cell, 2002, 14:S61-S80. [31] Dill A, Jung HS, Sun TP.The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. Proc Natl Acad Sci USA, 2001, 98:14162-14167. [32] Lee S, Cheng H, King KE, et al.Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes Dev, 2002, 16:646-658. [33] Wen CK, Chang C.Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J]. Plant Cell, 2002, 14:87-100. [34] Peng J, Carol P, Richards DE, et al.The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes Dev, 1997, 11:3194-3205. [35] Silverstone AL, Ciampaglio CN, Sun T.The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell, 1998, 10:155-169. [36] Pysh LD, Wysocka-Diller JW, Camilleri C, et al.The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J, 1999, 18:111-119. [37] Asano K, Hirano K, Ueguchi-Tanaka M, et al.Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice[J]. Mol Genet Genomics, 2009, 281:223-231. [38] Hirano K, Asano K, Tsuji H, et al.Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice[J]. Plant Cell, 2010, 22:2680-2696. [39] Koornneef M, Elgersma A, Hanhart CJ, et al.A gibberellin insensitive mutant of Arabidopsis thaliana[J]. Physiol Plant, 1985, 65. [40] McGinnis KM, Thomas SG, Soule JD, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15:1120-1130. [41] Wang F, Deng XW.Plant ubiquitin-proteasome pathway and its role in gibberellin signaling[J]. Cell Res, 2011, 21:1286-1294. [42] Dill A, Thomas SG, Hu J, et al.The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation[J]. Plant Cell, 2004, 16:1392-1405. [43] Fu X, Richards DE, Fleck B, et al.The Arabidopsis mutant sleepy1gar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates[J]. Plant Cell, 2004, 16:1406-1418. [44] Kim SI, Park BS, Kim do Y, et al. E3 SUMO ligase AtSIZ1 positively regulates SLY1-mediated GA signalling and plant development[J]. Biochem J, 2015, 469:299-314. [45] Ariizumi T, Lawrence PK, Steber CM.The role of two f-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiol[J]. 2011, 155:765-775. [46] Ariizumi T, Steber CM.Mutations in the F-box gene SNEEZY result in decreased Arabidopsis GA signaling[J]. Plant Signal Behav, 2011, 6:831-833. [47] Strader LC, Ritchie S, Soule JD, et al.Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY[J]. Proc Natl Acad Sci USA, 2004, 101:12771-12776. [48] Daviere JM, Achard P.A pivotal role of DELLAs in regulating multiple hormone signals[J]. Mol Plant, 2015, 9:10-20. [49] Ariizumi T, Murase K, Sun TP, et al.Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1[J]. Plant Cell, 2008, 20:2447-2459. [50] Ariizumi T, Hauvermale AL, Nelson SK, et al.Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling[J]. Plant Physiol, 2013, 162:2125-2139. [51] Ueguchi-tanaka M, Hirano K, Hasegawa Y, et al. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant[J]. Plant Cell, 2008, 20:2437-2446. [52] Dai C, Xue HW.Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling[J]. EMBO J, 2010, 29:1916-1927. [53] Qin Q, Wang W, Guo X, et al.Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4[J]. PLoS Genet, 2014, 10:e1004464. [54] Filardo F, Robertson M, Singh DP, et al.Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis[J]. Planta, 2009, 229:523-537. [55] Shimada A, Ueguchi-Tanaka M, Sakamoto T, et al.The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. Plant J, 2006, 48:390-402. [56] Swain SM, Tseng TS, Olszewski NE.Altered expression of SPINDLY affects gibberellin response and plant development[J]. Plant Physiol, 2001, 126:1174-1185. [57] Swain SM, Tseng TS, Thornton TM, et al.SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant[J]. Plant Physiol, 2002, 129:605-615. [58] Zentella R, Hu J, Hsieh WP, et al.O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis[J]. Genes Dev, 2016, 30:164-176. [59] Zentella R, Sui N, Barnhill B, et al.The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA[J]. Nat Chem Biol, 2017, 13:479-485. [60] Conti L, Nelis S, Zhang C, et al.Small Ubiquitin-like Modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin[J]. Dev Cell, 2014, 28:102-110. [61] Yoshida H, Ueguchi-Tanaka M.DELLA and SCL3 balance gibberellin feedback regulation by utilizing INDETERMINATE DOMAIN proteins as transcriptional scaffolds[J]. Plant Signal Behav, 2014, 9:e29726. [62] Van De Velde K, Ruelens P, Geuten K, et al. Exploiting DELLA signaling in cereals[J]. Trends Plant Sci, 2017, 22:880-893. [63] de Lucas M, Daviere JM, Rodriguez-Falcon M, et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature, 2008, 451:480-484. [64] Feng S, Martinez C, Gusmaroli G, et al.Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451:475-479. [65] Bai MY, Shang JX, Oh E, et al.Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nat Cell Biol, 2012, 14:810-817. [66] Gallego-Bartolome J, Minguet EG, Grau-Enguix F, et al.Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proc Natl Acad Sci USA, 2012, 109:13446-13451. [67] Li QF, Wang C, Jiang L, et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis[J]. Sci Signal, 2012, 5:ra72. [68] Bernardo-Garcia S, de Lucas M, Martinez C, et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth[J]. Genes Dev, 2014, 28:1681-1694. [69] Oh E, Zhu JY, Bai MY, et al.Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. Elife, 2014, 3. [70] An F, Zhang X, Zhu Z, et al.Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings[J]. Cell Res, 2012, 22:915-927. [71] Marín-de la Rosa N, Sotillo B, Miskolczi P, et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners[J]. Plant Physiol, 2014, 166:1022-1032. [72] Braun N, de Saint Germain A, Pillot JP, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching[J]. Plant Physiol, 2012, 158:225-238. [73] Drummond RS, Janssen BJ, Luo Z, et al.Environmental control of branching in petunia[J]. Plant Physiol, 2015, 168:735-751. [74] Guan JC, Koch KE, Suzuki M, et al.Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Plant Physiol, 2012, 160:1303-1317. [75] Rameau C, Bertheloot J, Leduc N, et al.Multiple pathways regulate shoot branching[J]. Front Plant Sci, 2015, 5:741. [76] Daviere JM, Wild M, Regnault T, et al.Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Curr Biol, 2014, 24:1923-1928. [77] Resentini F, Felipo-Benavent A, Colombo L, et al.TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana[J]. Mol Plant, 2015, 8:482-485. [78] Nakamura H, Xue YL, Miyakawa T, et al.Molecular mechanism of strigolactone perception by DWARF14[J]. Nat Commun, 2013, 4:2613. [79] Hou X, Lee LY, Xia K, et al.DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Dev Cell, 2010, 19:884-894. [80] Wild M, Daviere JM, Cheminant S, et al.The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses[J]Plant Cell, 2012, 24:3307-3319. [81] Yang DL, Yao J, Mei CS, et al.Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. PNAS, 2012:E1192-E1200. [82] Grebe M.The patterning of epidermal hairs in Arabidopsis--updated[J]. Curr Opin Plant Biol, 2012, 15:31-37. [83] Qi T, Song S, Ren Q, et al.The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23:1795-1814. [84] Qi T, Huang H, Wu D, et al.Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. Plant Cell, 2014, 26:1118-1133. [85] Yu S, Galvao VC, Zhang YC, et al.Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors[J]. Plant Cell, 2012, 24:3320-3332. [86] Achard P, Herr A, Baulcombe DC, et al.Modulation of floral development by a gibberellin-regulatedmicroRNA[J]. Development, 2004, 131:3357-3365. [87] Achard P, Liao L, Jiang C, et al.DELLAs contribute to plant photomorphogenesis[J]. Plant Physiol, 2007, 143:1163-1172. [88] Moon J, Suh SS, Lee H, et al.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. Plant J, 2003, 35:613-623. [89] Mutasa-Göttgens E, Hedden P.Gibberellin as a factor in floral regulatory networks[J]. J Exp Bot, 2009, 60:1979-1989. [90] Xu F, Li T, Xu PB, et al.DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Lett, 2016, 590:541-549. [91] Li Y, Wang H, Li X, et al.Two DELLA-interacting proteins bHLH48 and bHLH60 regulate flowering under long-day conditions in Arabidopsis thaliana[J]. J Exp Bot, 2017, 68:2757-2767. [92] Li W, Wang H, Yu D.Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions[J]. Mol Plant, 2016, 9:1492-1503. [93] Zhang L, Chen L, Yu D.Transcription Factor WRKY75 Interacts with DELLA proteins to affect flowering[J]. Plant Physiol, 2018, 176:790-803. [94] Park J, Nguyen KT, Park E, et al.DELLA proteins and their interacting RING Finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. Plant Cell, 2013, 25:927-943. [95] Arnaud N, Girin T, Sorefan K, et al.Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes Dev, 2010, 24:2127-2132. [96] Gallego-Bartolomé J, Minguet EG, Marin JA, et al.Transcriptional diversification and functional conservation between DELLA proteins in Arabidopsis[J]. Mol Biol Evol, 2010, 27:1247-1256. [97] Josse EM, Gan Y, Bou-Torrent J, et al.A DELLA in Disguise:SPATULA restrains the growth of the developing Arabidopsis seedling[J]. Plant Cell, 2011, 23:1337-1351. [98] Koornneef M, Bentsink L, Hilhorst H.Seed dormancy and germination[J]. Curr Opin Plant Biol, 2002, 5:33-36. [99] Piskurewicz U, Jikumaru Y, Kinoshita N, et al.The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity[J]. Plant Cell, 2008, 20:2729-2745. [100] Lim S, Park J, Lee N, et al.ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis[J]. Plant Cell, 2013, 25:4863-4878. [101] Heo JO, Chang KS, Kim IA, et al.Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root[J]. Proc Natl Acad Sci USA, 2011, 108:2166-2171. [102] Zhang ZL, Ogawa M, Fleet CM, et al.Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:2160-2165. [103] Colasanti J, Tremblay R, Wong AY, et al.The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants[J]. BMC Genomics, 2006, 7:158. [104] Feurtado JA, Huang D, Wicki-Stordeur L, et al.The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation[J]. Plant Cell, 2011, 23:1772-1794. [105] Fukazawa J, Teramura H, Murakoshi S, et al.DELLAs Function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis[J]. The Plant Cell, 2014, 26:2920-2938. [106] Yoshida H, Hirano K, Sato T, et al.DELLA protein functions as a transcriptional activator through the DNA binding of the indeterminate domain family proteins[J]. Proc Natl Acad Sci USA, 2014, 111:7861-7866. [107] Fukazawa J, Mori M, Watanabe S, et al.DELLA-GAF1 complex is a main component in gibberellin feedback regulation of GA20 oxidase 2[J]. Plant Physiol, 2017, 175:1395-1406. [108] Weiss D, Ori N.Mechanisms of cross talk between gibberellin and other hormones[J]. Plant Physiol, 2007, 144:1240-1246. [109] Marín-de la Rosa N, Pfeiffer A, Hill K, et al. Genome wide binding site analysis reveals transcriptional coactivation of Cytokinin-responsive genes by DELLA proteins[J]. PLoS Genet, 2015, 11:e1005337. [110] Moubayidin L, Perilli S, Dello Ioio R, et al.The rate of cell differentiation controls the Arabidopsis root meristem growth phase[J]. Curr Biol, 2010, 20:1138-1143. [111] Rodriguez-Milla MA, Salinas J.Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress[J]. Mol Plant, 2009, 2:526-534. [112] Locascio A, Blazquez MA, Alabadi D.Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction[J]. Curr Biol, 2013, 23:804-809. [113] Chen X, Wu S, Liu Z, et al.Environmental and endogenous control of cortical microtubule orientation[J]. Trends Cell Biol, 2016, 26:409-419. [114] Salanenka Y, Verstraeten I, Lofke C, et al.Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane[J]. Proc Natl Acad Sci USA, 2018, 115:3716-3721. [115] Ito T, Okada K, Fukazawa J, et al.DELLA-dependent and -independent gibberellin signaling[J]. Plant Signal Behav, 2018:e1445933. [116] Maymon I, Greenboim-Wainberg Y, Sagiv S, et al.Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway[J]. Plant J, 2009, 58:979-988. [117] Fuentes S, Ljung K, Sorefan K, et al.Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses[J]. Plant Cell, 2012, 24:3982-3996. [118] Okada K, Ito T, Fukazawa J, et al.Gibberellin induces an increase in cytosolic Ca2+ via a DELLA-independent signaling pathway[J]. Plant Physiol, 2017, 175:1536-1542. |
[1] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[2] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[3] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[6] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[7] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[8] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[9] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[10] | LI Ping, GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao, PENG You-lin. Research Progress of Sterol in Regulating Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(7): 90-98. |
[11] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
[12] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[13] | YUE Man-fang, ZHANG Chun, WU Zhong-yi. Research Progress in the Structural and Functional Analysis of Plant Transcription Factor AP2/ERF Protein Family [J]. Biotechnology Bulletin, 2022, 38(12): 11-26. |
[14] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[15] | QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(10): 29-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||