Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (7): 14-23.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442
Previous Articles Next Articles
WU De-wei1, WANG Jiao-jiao2, XIE Dao-xin2
Received:
2018-05-11
Online:
2018-07-26
Published:
2018-08-01
WU De-wei, WANG Jiao-jiao, XIE Dao-xin. Jasmonate Action and Biotic Stress Response in Plants[J]. Biotechnology Bulletin, 2018, 34(7): 14-23.
[1] Wasternack C, Hause B.Jasmonates:biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Ann Bot, 2013, 111(6):1021-1058. [2] Huang H, Liu B, Liu L, et al.Jasmonate action in plant growth and development[J]. J Exp Bot, 2017, 68(6):1349-1359. [3] Zhang L, Zhang F, et al.Jasmonate signaling and manipulation by pathogens and insects[J]. J Exp Bot, 2017, 68(6):1371-1385. [4] Yan C, Xie D.Jasmonate in plant defence:sentinel or double agent?[J]. Plant Biotechnol J, 2015, 13(9):1233-1240. [5] Browse J, Jasmonate passes muster:A receptor and targets for the defense hormone[J]. Annu Rev Plant Biol, 2009, 60:183-205. [6] Howe GA, Jander G.Plant immunity to insect herbivores[J]. Annu Rev Plant Biol, 2008, 59:41-66. [7] Liechti R, Farmer EE.The jasmonate pathway[J]. Science, 2002, 296(5573):1649-1650. [8] Wasternack C, Song S.Jasmonates:biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. J Exp Bot, 2017, 68(6):1303-1321. [9] Chini A, Monte I, Zamarreno AM, et al.An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis[J]. Nat Chem Biol, 2018, 14(2):171-178. [10] Fonseca S, Chini A, Hamberg M, et al.(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate[J]. Nat Chem Biol, 2009, 5(5):344-350. [11] Staswick PE, Tiryaki I.The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis[J]. Plant Cell, 2004, 16(8):2117-2127. [12] Yan J, Li S, Gu M, et al.Endogenous bioactive jasmonate is composed of a set of(+)-7-iso-JA-amino acid conjugates[J]. Plant Physiol, 2016, 172(4):2154-2164. [13] Browse J, Howe GA.New weapons and a rapid response against insect attack[J]. Plant Physiol, 2008, 146(3):832-838. [14] Mousavi SAR, Chauvin A, Pascaud F, et al.GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463):422-426. [15] Yan C, Fan M, Yang M, et al.Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Mol Cell, 2018, 70(1):136-149. [16] Hu P, Zhou W, Cheng ZW, et al.JAV1 Controls jasmonate-regulated plant defense[J]. Mol Cell, 2013, 50(4):504-515. [17] Xie DX, Feys BF, James S, et al.COI1:An Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366):1091-1094. [18] Song S, Qi T, Wasternack C, et al.Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Curr Opin Plant Biol, 2014, 21:112-119. [19] Xu L, Liu F, Lechner E, et al.The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J]. Plant Cell, 2002, 14(8):1919-1935. [20] Yan Y, Stolz S, Chételat A, et al.A downstream mediator in the growth repression limb of the jasmonate pathway[J]. Plant Cell, 2007, 19(8):2470-2483. [21] Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154):661-665. [22] Chini A, Fonseca S, Fernández G, et al.The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154):666-671. [23] Yan JB, Zhang C, Gu M, et al.The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. Plant Cell, 2009, 21(8):2220-2236. [24] Sheard LB, Tan X, Mao HB, et al.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322):400-405. [25] Katsir L, Schilmiller AL, Staswick PE, et al.COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. Proc Natl Acad Sci USA, 2008, 105(19):7100-7105. [26] Yan J, Li H, Li S, et al.The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway[J]. Plant Cell, 2013, 25(2):486-498. [27] Qi T, Wang J, et al.Regulation of jasmonate-induced leaf senesc-ence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis[J]. Plant Cell, 2015, 27(6):1634-1649. [28] Schweizer F, Fernández-Calvo P, Zander M, et al.Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, andMYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J]. Plant Cell, 2013, 25(8):3117-3132. [29] Fernandez-Calvo P, Chini A, Fernandez-Barbero G, et al.The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. Plant Cell, 2011, 23(2):701-715. [30] Cheng Z, Sun L, Qi T, et al.The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis[J]. Mol Plant, 2011, 4(2):279-288. [31] Chen Q, Sun J, Zhai Q, et al.The basic helix-loop-helix transcription factor myc2 directly represses plethora expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. Plant Cell, 2011, 23(9):3335-3352. [32] Song S, Qi T, Huang H, et al.The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23(3):1000-1013. [33] Zhang F, Yao J, Ke J, et al.Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525(7568):269-273. [34] Chen R, Jiang H, Li L, et al.The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. Plant Cell, 2012, 24(7):2898-2916. [35] Zhu Z, An F, Feng Y, et al.Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(30):12539-12544. [36] Shyu C, Figueroa P, Depew CL, et al.JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis[J]. Plant Cell, 2012, 24(2):536-550. [37] Pauwels L, Barbero GF, Geerinck J, et al.NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289):788-791. [38] Song S, Huang H, Gao H, et al.Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 2014, 26(1):263-279. [39] Hong GJ, Xue XY, Mao YB, et al.Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24(6):2635-2648. [40] Ishida T, Kurata T, Okada K, et al.A genetic regulatory network in the development of trichomes and root hairs[J]. Annu Rev Plant Biol, 2008, 59:365-386. [41] Winkel-Shirley B.Biosynthesis of flavonoids and effects of stress[J]. Curr Opin Plant Biol, 2002, 5(3):218-223. [42] Broun P.Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis[J]. Curr Opin Plant Biol, 2005, 8(3):272-279. [43] Qi T, Song S, Ren Q, et al.The Jasmonate-ZIM-Domain proteins interact with the WD-Repeat/bHLH/MYB Complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(5):1795-1814. [44] Boter M, Golz JF, Gimenez-Ibanez S, et al.FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. Plant Cell, 2015, 27(11):3160-3174. [45] Fonseca S, Fernandez-Calvo P, et al.bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses[J]. PLoS One, 2014, 9(1):e86182. [46] Song SS, Qi TC, Fan M, et al.The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development[J]. PLoS Genetics, 2013, 9(7):e1003653. [47] Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, et al.Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1(JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis[J]. Plant Physiol, 2013, 163(1):291-304. [48] Nakata M, Mitsuda N, Herde M, et al.A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656. [49] Ning Y, Liu W, Wang GL.Balancing immunity and yield in crop plants[J]. Trends Plant Sci, 2017, 22(12):1069-1079. [50] Mao YB, Liu YQ, et al.Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nat Commun, 2017, 8:13925. [51] Musser RO, Hum-Musser SM, Eichenseer H, et al.Herbivory:caterpillar saliva beats plant defences[J]. Nature, 2002, 416(6881):599-600. [52] Chung SH, Rosa C, Scully ED, et al.Herbivore exploits orally secreted bacteria to suppress plant defenses[J]. Proc Natl Acad Sci USA, 2013, 110(39):15728-15733. [53] Verhage A, Vlaardingerbroek I, Raaymakers C, et al.Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory[J]. Front Plant Sci, 2011, 2:47. [54] Geng X, Cheng J, Gangadharan A, et al.The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense[J]. Plant Cell, 2012, 24(11):4763-4774. [55] Zheng XY, Spivey NW, Zeng W, et al.Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host Microbe, 2012, 11(6):587-596. [56] Melotto M, Underwood W, Koczan J, et al.Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5):969-980. [57] Cui H, Wang Y, et al.Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cell Host Microbe, 2010, 7(2):164-175. [58] Zhou Z, Wu Y, Yang Y, et al.An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion[J]. Plant Cell, 2015, 27(7):2032-2041. [59] Jiang S, Yao J, Ma KW, et al.Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors[J]. PLoS Pathog, 2013, 9(10):e1003715. [60] Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, et al.The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis[J]. PLoS Biology, 2014, 12(2):e1001792. [61] Yang L, Teixeira PJ, Biswas S, et al.Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence[J]. Cell Host Microbe, 2017, 21(2):156-168. [62] El Oirdi M, El Rahman TA, Rigano L, et al.Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato[J]. Plant Cell, 2011, 23(6):2405-2421. [63] Zhu W, Wei W, Fu Y, et al.A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance[J]. PLoS One, 2013, 8(1):e53901. [64] Plett JM, Daguerre Y, Wittulsky S, et al.Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid(JA)responsive genes[J]. Proc Natl Acad Sci USA, 2014, 111(22):8299-8304. [65] Gimenez-Ibanez S, Chini A, Solano R.How microbes twist jasmonate signaling around their little fingers[J]. Plants(Basel), 2016, 5(1):9. [66] Thatcher LF, Gardiner DM, Kazan K, et al.A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis[J]. Mol Plant Microbe In, 2012, 25(2):180-190. [67] Thatcher LF, Manners JM, Kazan K.Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis[J]. Plant J, 2009, 58(6):927-939. [68] Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis[J]. Proc Natl Acad Sci USA, 2011, 108(48):E1254-E1263. [69] Ziebell H, Murphy AM, Groen SC, et al.Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco[J]. Sci Rep, 2011, 1:187. [70] Lewsey MG, Murphy AM, MacLean D, et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor[J]. Mol Plant Microbe Intrant, 2010, 23(7):835-845. [71] Wu D, Qi T, Li WX, et al.Viral effector protein manipulates host hormone signaling to attract insect vectors[J]. Cell Res, 2017, 27(3):402-415. [72] Li R, Weldegergis BT, Li J, et al.Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance[J]. Plant Cell, 2014, 26(12):4991-5008. [73] Yang JY, Iwasaki M, Machida C, et al.betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses[J]. Gene Dev, 2008, 22(18):2564-2577. [74] Zhang T, Luan JB, Qi JF, et al.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor[J]. Mol Ecol, 2012, 21(5):1294-1304. [75] Zhang C, Ding Z, Wu K, et al.Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Mol Plant, 2016, 9(9):1302-1314. [76] Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, et al.Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(3):1014-1032. [77] Jia Q, Liu N, et al.CLCuMuB betaC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana[J]. PLoS Pathog, 2016, 12(6):e1005668. [78] Westwood JH, Lewsey MG, Murphy AM, et al.Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant-aphid interactions[J]. J Gen Virol, 2014, 95:733-739. [79] Rojas MR, Hagen C, Lucas WJ, et al.Exploiting chinks in the plant’s armor:evolution and emergence of geminiviruses[J]. Annu Rev Phytopathol, 2005, 43:361-394. [80] Cui X, Li G, et al.A begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus[J]. J Virol, 2005, 79(16):10764-10775. [81] Li HW, Lucy AP, Guo HS, et al.Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism[J]. EMBO J, 1999, 18(10):2683-2691. [82] Oka K, Kobayashi M, Mitsuhara I, et al.Jasmonic acid negatively regulates resistance to tobacco mosaic virus in tobacco[J]. Plant Cell Physiol, 2013, 54(12):1999-2010. |
[1] | ZHAN Yan, ZHOU Li-bin, JIN Wen-jie, DU Yan, YU Li-xia, QU Ying, MA Yong-gui, LIU Rui-yuan. Research Progress in Plant Leaf Color Mutation Induced by Radiation [J]. Biotechnology Bulletin, 2023, 39(8): 106-113. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[4] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[5] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[6] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[7] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[10] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[11] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[12] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[13] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[14] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[15] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||