[1] Woolliams GE.Host range and symptomatology of Verticillium dahliae in economic, weed and native plants in interior British Columbia[J]. Can J Plant Sci, 1966, 46(6):661-669. [2] Isaac I.Speciation in Verticillium[J]. Annu Rev Phytopathol, 1967, 5:201-222. [3] Klosterman SJ, Atallah ZK, Vallad GE, et al.Diversity, pathogenicity, and management of verticillium species[J]. Annual Review of Phytopathology, 2009, 22(4):39-62. [4] Rauyaree P, et al.Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae[J]. Curr Genet, 2005, 48(2):109-116. [5] Tzima AK, Paplomatas EJ, et al.The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae[J]. Fungal Genet Biol, 2012, 4:271-283. [6] Klimes A, Amyotte SG, Grant S, et al.Microsclerotia development in Verticillium dahliae:Regulation and differential expression of the hydrophobin gene VDH1[J]. Fungal Genet Biol, 2008, 12:1525-1532. [7] Tzima AK, Paplomatas EJ, Rauyaree P, et al.Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae[J]. Fungal Genetics Biology, 2010, 47(5):406-415. [8] Zhang YL, Li ZF, Feng ZL, et al.Isolation and functional analysis of the pathogenicity related gene VdPR3 from Verticillium dahliae on cotton[J]. Curr Genet, 2015, 61(4):555-566. [9] Zhang LS, Ni H, Du X, et al.The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections[J]. New Phytologist, 2017, 215(1):368-381. [10] Kombrink A, Rovenich H, Shi-kunne XQ, et al. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts[J]. Molecular Plant Pathology, 2017, 18(4):596-608. [11] Yang XY, Tu LL, Zhu LF, et al.Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray[J]. Journal of Experimental Botany, 2008, 59(13):3661-3674. [12] Knight MR, Anthony KC, Steven MS.Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium[J]. Nature, 1991, 352(5):524-526. [13] Sheen J.Singal transduction in maize and Arabidopsis mesophyll protoplases[J]. Plant Physiology, 2001, 127(4):1466-1475. [14] 韩小路, 白静科, 张玮, 等. 介导的苹果果生刺盘孢原生质体转化体系的研究[J]. 西北农业学报, 2016(3):442-449. [15] 郭成金, 赵润. 冬虫夏草原生质体制备与再生条件的研究[J]. 食品科学, 2009, 30(5):166-170. [16] 弭宝彬, 张吉祥, 杨宇红, 等. 尖抱镰刀菌辣椒专化型原生质体制备条件优化[J]. 生物技术通报, 2013, 4(4):96-100. [17] Goswami RS.Targeted gene replacement in fungi using a split-marker approach[J]. Methods Mol Biol, 2012, 16:255-269. [18] 李晶莹, 孙婷婷, 张国权, 等. 大型真菌原生质体的制备与再生研究[J]. 中国林副特产, 2015, 4(38):98-101. [19] 伏建国, 强胜, 朱云枝. 链格孢菌原生质体的制备与限制性内切酶介导整合转化的致病性诱变[J]. 菌物学报, 2005, 24(3):407-413. [20] 王淑珍, 高雁, 范俊, 等. 松茸原生质体制备与再生的研究[J]. 食用菌, 2002, 24(3):6-8. [21] 王昱, 王义, 王康宇, 等. 灵芝原生质体制备与再生研究[J]. 北方园艺, 2013, 37(16):184-188. [22] 祝子坪, 马海乐. 桑黄菌原生质体的分离与再生研究[J]. 中国中药, 2007, 32(21):21-22. [23] 张卉, 刘长江. 姬松茸原生质体形成和再生的研究[J]. 微生物学报, 2003, 23(3):18-20. [24] 梁清乐, 王秋颖, 曾念开, 等. 茯苓原生质体制备与再生条件初探[J]. 中草药, 2006, 37(5):773-775. [25] 李伶俐, 严红, 李兴红, 等. 甘蓝枯萎病菌原生质体的制备与再生条件的优化[J]. 中国农学通报, 2011(10):203-207. [26] 张婷, 李佳, 侯英敏, 等. 酶法制备黑曲霉原生质体的条件[J]. 大连工业大学学报, 2015, 34(4):239-242. [27] 张丽霞, 郭成金. 猪苓原生质体制备与再生条件的研究[J]. 中国食用菌, 2008, 27(5):35-37. [28] 陈孝仁, 王源超, 张正光, 等. 大豆疫霉菌原生质体制备及再生菌株的生物学性状[J]. 南京农业大学学报, 2005, 28(4):45-49. [29] 姚婷婷, 王正祥. 黑曲霉原生质体的制备、再生及转化条件[J]. 食品与生物技术学报, 2006, 25(4):116-120. |