Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (7): 148-155.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0088
Previous Articles Next Articles
LI Xiao-yuan, XIE Li-nan
Received:
2019-01-23
Online:
2019-07-26
Published:
2019-07-29
LI Xiao-yuan, XIE Li-nan. Research Progress in Na+ Regulation Mechanism of Plants Under Salt Stress[J]. Biotechnology Bulletin, 2019, 35(7): 148-155.
[1] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59:651-681. [2] 李建锐. 谷子SiASR4基因参与植物响应干旱和盐胁迫的功能研究[D]. 北京:中国农业大学, 2018. [3] 赵盼盼. 棉花GhACR1沉默株系的构建及其功能初步研究[D]. 新乡:河南师范大学, 2018. [4] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答[J]. 中国稻米, 2016, 22(6):52-60. [5] Zhu JK.Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53:247-273. [6] Rao GG, Ramaiah JK, Rao GR.Salinity induced changes in the activities of aspartate & alanine amino transferases & glutamate dehydrogenase in peanut(Arachis hypogaea L.)leaves[J]. Indian Journal of Experimental Biology, 1981, 19(8):771. [7] Essah PA, Davenport R, Tester M.Sodium influx and accumulation in Arabidopsis[J]. Plant Physiology, 2003, 133:307-318. [8] Bose J, Rodrigomoreno A, Lai D, et al.Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa[J]. Annals of Botany, 2015, 115:481-494. [9] Thewes S.Calcineurin-Crz1 signaling in lower eukaryotes[J]. Eukaryot Cell, 2014, 13:694-705. [10] Yu Q, An L, Li W.The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Rep, 2014, 33:203-214. [11] Zhu JK.Plant salt tolerance[J]. TRENDS in Plant Science, 2001, 6(2):66-71. [12] Yue Y, Zhang M, Zhang J, et al.SOS1 gene overexpression increa-sed salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio[J]. Journal of Plant Physiology, 2012, 169(3):255-261. [13] Gaxiola RA, Li J, Undurraga S, et al.Drought and salt tolerant plants result from overexpression of the AVP1 H+-pump[J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98(20):11444-11449. [14] Zhang GH, Su Q, An LJ, et al.Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis[J]. Plant Physiology and Biochemistry, 2008, 46(2):117-126. [15] Yang Y, Guo Y.Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2):523-539. [16] Liu J, Zhu JK.A calcium sensor homolog required for plant salt tolerance[J]. Science, 1998, 280(5371):1943-1945. [17] Ishitani M, Liu J, Halfter U, et al.SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell, 2000, 12(9):1667. [18] Quan R, Lin H, Mendoza I, et al.SCABP8/CBL10, a putative calc-ium sensor, interacts with the protein kinase SOS2 to protect Ara-bidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4):1415-1431. [19] Zhu JK.Abiotic Stress signaling and responses in plants[J]. China Rice, 2016, 167(2):313. [20] Lin H, Guo Y.Phosphorylation of SOS3 like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J]. The Plant Cell, 2009, 21(5):1607-1619. [21] Halfter U, Ishitani M, Zhu JK.The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proceedings of the National Academy of Sciences of the USA, 2000, 97(7):3735. [22] Shi HZ, Ishitani M, Cheolsoo K, et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the National Academy of Sciences of the USA, 2000, 97(12):6896. [23] Qiu QS, Guo Y, Dietrich MA, et al.Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the National Academy of Sciences of the USA, 2002, 99(12):8436. [24] Zhou H, Lin H, Chen S, et al.Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins[J]. The Plant Cell, 2014, 26:1166-1182. [25] Ohta M, Guo Y, Halfter U, et al.A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100:11771-11776. [26] Kim WY, Ali Z, Park HJ, et al.Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis[J]. Nature Communications, 2013, 4:273-275. [27] Tan T, Cai J, Zhan E, et al.Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis[J]. Plant Molecular Biology, 2016, 92:391-400. [28] Yang Y, Qin Y, Xie C, et al.The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. The Plant Cell, 2010, 22:1313-1332. [29] Fuglsang AT, Guo Y, Cuin TA, et al.Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein[J]. The Plant Cell, 2007, 19(5):1617-1634. [30] Quintero FJ, Martinez-Atienza J, Villalta I, et al.Activation of the plasma membrane Na+/H+ antiporter salt-overly-sensitive 1(SOS1)by phosphorylation of an auto-inhibitory C-terminal domain[J]. Proceedings of the National Academy of Sciences of the USA, 2011, 108(6):2611-2616. [31] Núñez-Ramírez R, Sánchez-Barrena MJ, Villalta I, et al.Structural insights on the plant salt-overly-sensitive 1(SOS1)Na+/H+ antiporter[J]. Journal of molecular biology, 2012, 424(5):283-294. [32] Feki K, Quintero FJ, Pardo JM, et al.Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation[J]. Plant molecular biology, 2011, 76(6):545-556. [33] Shi H, Quintero FJ, Pardo JM, et al.The putative plasma membrane NA/H antiporter SOS1 controls long-distance NA+ transport in plants[J]. The Plant Cell, 2002, 14(2):465-477. [34] Olías R, Eljakaoui Z, Li J, et al.The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs[J]. Plant, Cell & Environment, 2009, 32(7):904-916. [35] Shabala S.Learning from halophytes:physiological basis and strategies to improve abiotic stress tolerance in crops[J]. Ann Bot, 2013, 112(7):1209-1221. [36] Katschnig D, Bliek T, Rozema J, et al.Constitutive high-level SOS1, expression and absence of HKT1;1, expression in the salt-accumulating halophyte Salicornia dolichostachya[J]. Plant Science, 2015, 234:144-154. [37] Zhang WD, Wang P, Bao Z, et al.SOS1, HKT1;5, and NHX1 synergisti-cally modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora[J]. Frontiers in Plant Science, 2017, 8:576. [38] Benito B, Haro R, et al.The twins K + and Na + in plants[J]. Journal of Plant Physiology, 2014, 171(9):723-731. [39] Huang Y, Guan C, Liu Y, et al.Enhanced growth performance and salinity tolerance in transgenic switchgrass via overexpressing Vacuolar Na+(K+)/H+ antiporter gene(Pv NHX1)[J]. Frontiers in Plant Science, 2017, 8:458. [40] Hamamoto S, Horie T, Hauser F, et al.HKT transporters mediate salt stress resistance in plants:from structure and function to the field[J]. Current opinion in biotechnology, 2015, 32:113-120. [41] Garriga M, Raddatz N, Véry AA, et al.Cloning and functional characterization of HKT1 and AKT1 genes of fragaria spp. -relationship to plant response to salt stress[J]. Journal of Plant Physiology, 2016, 210:9-17. [42] Zhang M, Cao Y, Wang Z, et al.A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New Phytologist, 2018, 217(3):1161-1176. [43] Horie T, Yoshida K, Nakayama H, et al.Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. The Plant Journal, 2010, 27(2):129-138. [44] Pascal M, Hosoo Y, Goshima S, et al.Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the USA, 2002, 99(9):6428-6433. [45] Pascal M, Brendan E, Rama V, et al.Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1[J]. Febs Letters, 2002, 531(2):157-161. [46] Rus A, Yokoi S, Sharkhuu A, et al.At HKT1 is a salt tolerance determinant that controls Na+ entry into plant roots.[J]. Proceedings of the National Academy of Sciences of the USA, 2001, 98:14150-14155. [47] Hazzouri KM, Basel K, et al.Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism[J]. Frontiers in Plant Science, 2018, 9:156. [48] Berthomieu P.Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9):2004-2014. [49] An D, Chen JG, Gao YQ, et al.AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. Plos Genetics, 2017, 13(10):e1007086. [50] Blumwald E.Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4):431-434. [51] Chanroj S, Wang GY, Venema K, et al.Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants[J]. Frontiers in Plant Science, 2012, 3:25. [52] Apse MP, Aharon GS, Snedden WA, et al.Salt tolerance conferred by over expression of a vacuolar Na CMC antiport in Arabidopsis[J]. Science, 1999, 285(12):1256-1258. [53] Fukuda A, Nakamura A, Tanaka Y.Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa[J]. BBA-Gene Structure and Expression, 1999, 1446:149-155. [54] Yamaguchi T, Apse M P, Shi H, et al.Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(21):12510-12515. [55] Bassil E, Blumwald E.The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J]. The Plant Cell, 2011, 23(1):224-239. [56] Blumwald E, Aharon GS, Apse MP.Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465(1):140-151. [57] Zhang HX, Blumwald E.Transgenic salt tolerant tomato plants accumulate salt in fruit[J]. Nature Biotechnology, 2001, 19(8):765-768. [58] Xue ZY, Zhi DY, Xue GP.Enhanced salt tolerance of transgenic wheat(Tritivum aestivum L.)expressing a vacuolar Na+/ H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na +[J]. Plant Science, 2004, 167(4):859-899. [59] He CX, Yan JQ, Shen GX.Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the fields[J]. Plant Cell Physiology, 2005, 46(11):1848-1854. [60] Julkowska MM, et al.Tuning plant signaling and growth to survive salt[J]. Trends in Plant Science, 2015, 20(9):586-594. [61] Hernández A, Jiang X, Cubero B, et al.Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast:the endosome/prevacuolar compartment is a target for salt toxicity[J]. J Biol Chem, 2009, 284(21):14276-14285. [62] Hamaji K, Nagira M, Yoshida K, et al.Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis[J]. Plant & Cell Physiology, 2009, 50:2023-2033. [63] Mazel A, Leshem Y, Tiwari BS, et al.Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRAB7(AtRABG3E)[J]. Plant Physiology, 2004, 134:118-128. [64] Blumwald E, Aharon GS, Apse MP.Sodium transport in plant cells[J]. Biochimicaet Biophysica Acta, 2000, 1465:140-151. [65] Blumwald E, Engineering. Solt tolerance in plants[J]. Biotech-nology and Genetic Engineering Reviews, 2003, 20(1):261-276. |
[1] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[2] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[3] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[4] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[5] | WANG Ming-tao, LIU Jian-wei, ZHAO Chun-zhao. Molecular Mechanisms of Cell Wall Integrity in Plants Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(11): 18-27. |
[6] | ZHANG Yu-juan, LI Dong-hua, GONG Hui-hui, CUI Xin-xiao, GAO Chun-hua, ZHANG Xiu-rong, YOU Jun, ZHAO Jun-sheng. Cloning and Salt-tolerance Analysis of NAC Transcription Factor SiNAC77 from Sesamum indicum L. [J]. Biotechnology Bulletin, 2023, 39(11): 308-317. |
[7] | XU Yang, DING Hong, ZHANG Guan-chu, GUO Qing, ZHANG Zhi-meng, DAI Liang-xiang. Metabolomics Analysis of Germinating Peanut Seed Under Salt Stress [J]. Biotechnology Bulletin, 2023, 39(1): 199-213. |
[8] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[9] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
[10] | ZHANG Tong-tong, ZHENG Deng-yu, WU Zhong-yi, ZHANG Zhong-bao, YU Rong. Functional Analysis of ZmNF-YB13 Responding to Drought and Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 115-123. |
[11] | MA Ya-nan, LU Xu, WEI Yun-chun, LI Kang, WEI Ruo-nan, LI Sheng, MA Shao-ying. Identification and Tissue Specific Expression Analysis of AKR Gene Family in Grape [J]. Biotechnology Bulletin, 2021, 37(8): 141-151. |
[12] | LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6 [J]. Biotechnology Bulletin, 2021, 37(7): 137-145. |
[13] | ZHANG Yong-lan, XIE Li-nan. Advances in HKT1 Study on the Mechanism of Salt Tolerance in Plants [J]. Biotechnology Bulletin, 2021, 37(6): 213-224. |
[14] | LI E, HUANG Yong, MENG Yuan-yuan, LI Xuan, DU Guang-hui, LIU Fei-hu. Isolation and Identification of the Endophytic Fungi of‘Bama hemp’ Under Salt Stress and Its Diversity Analysis [J]. Biotechnology Bulletin, 2021, 37(10): 26-33. |
[15] | HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus [J]. Biotechnology Bulletin, 2020, 36(9): 64-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||