Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (9): 134-143.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0234
Previous Articles Next Articles
QIU Jin, HUANG Huo-qing, YAO Bin, LUO Hui-ying
Received:
2019-03-20
Online:
2019-09-26
Published:
2019-09-16
QIU Jin, HUANG Huo-qing, YAO Bin, LUO Hui-ying. Improvement of Catalytic Activity of Amylase from Bacillus amyloliquefaciens and Its High Expression in Bacillus subtilis[J]. Biotechnology Bulletin, 2019, 35(9): 134-143.
[1] Reddy CK, Choi SM, Lee DJ, et al.Complex formation between starch and stearic acid:Effect of enzymatic debranching for starch[J]Food Chem, 2018, 244(1):136-142. [2] Bentley IS, Williams EC.Starch conversion[C]//Godfrey T, West S(eds. )London, UK:Industrial Enzymology, The Macmillan Press Ltd, 1996:341-357. [3] 王丽萨. 来源于Pyrococcus furiosus极端嗜热α-淀粉酶的研究[D]. 上海:中国科学院研究生院, 2007. [4] 段钢. 新型工业酶制剂的进步对生物化学品工业生产过程的影响[J]. 生物工程学报, 2009, 25(12):1808-1818. [5] Goyal N, Gupta JK, Soni SK.A novel raw starch digesting thermostable a-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch[J]. Enzyme Microb Tech, 2005, 37(2):723-734. [6] Jens EN, Torben V.Protein engineering of bacterial amylases[J]. Biochim Biophys Acta, 2000, 1543(2):253-274. [7] Van der Maarel MJ, Van der Veen B, Uitdehaag JCM, et al. Properties and applications of starch-converting enzymes of the α-amylase family[J]. Journal of Biotechnology, 2002, 94(2):137-155. [8] Gupta R, Gigras P, Mohapatra H, et al.Microbial α-amylase:A biotechnological perspective[J]. Process Biochemistry, 2003, 38(11):1599-1616. [9] Kilara A, Desai. M. Enzymes.In:Food Additives[C], III(Eds. ), New York, USA:Marcel Dekker Inc., 2002:661-706. [10] Lee BH.Other microorganism based products. In:fundamentals of food biotechnology[C]. New York, USA:Wiley-VCH Inc, 1996:291-352. [11] van der Maarel MJ, van der Veen B, Uitdehaag JCM, et al. Properties and applications of starch-converting enzymes of the α-amylase family[J]. Journal of Biotechnology, 2002, 94(2):137-155. [12] Swetha S, Dhanya G, Kesavan MN, et al.α-amylase from microbial sources-an overview on recent developments[J]. Food Technol Biotechnol, 2006, 44(2):173-184. [13] Weemaes C, De Cordt S, Goossens K, et al.High pressure, thermal, and combined pressure-temperature stabilities of α-amylases from Bacillus species[J]. Biotechnol Bioeng, 1996, 50(1):49-56. [14] Alikhajeh J, Khajeh K, Ranjbar B, et al.Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution:implications for thermal stability[J]. Acta Cryst, 2010, 66(2):121-129. [15] Hwang KY, Song HK, Chang C, et al.Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1. 7 A resolution[J]. Mol Cells, 1997, 7(2):251-258. [16] Shirai T, Igarashi K, Ozawa T, et al.Ancestral sequence evolutionary trace and crystal structure analyses of alkaline alpha-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins[J]. Proteins, 2007, 66(3):600-610. [17] Cornelius B, Jutta S, Karl HM, et al.Directed evolution of a bacterial-amylase:toward enhanced pH-performance and higher specific activity[J]. Protein Science, 2003, 12(10):2141-2149. [18] Nathalie D, Mischa M, Philippe J, et al.Engineering the thermostability of Bacillus licheniformis α-amylase[J]. Biologia Bratislava, 2002, 57(11):203-211. [19] Archana S, Satyanarayana T.Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis[J]. Extremophiles, 2012, 16(3):515-522. [20] Azadeh E, Khosro K, Hossein NM.Thermostabilization of Bacillus amyloliquefaciens amylase by chemical cross-linking[J]. J Biotechnol, 2006, 123(4):434-442. [21] Janecek S, Svensson B, MacGregor EA. Alpha-amylase:an enzyme specificity found in various families of glycoside hydrolases[J]. Cellular and Molecular Life Sciences, 2014, 71(4):1149-1170. [22] Sumitani J, Tottori T, Kawaguchi T, et al.New type of starch-binding domain:the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading[J]. Biochemical Journal, 2000, 350(2):477-484. [23] Li Z, Duan X, Chen S, et al.Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B[J]. PLoS One, 2017, 12(3):1-11. [24] Nielsen JE, Borchert TV.Protein engineering of bacterial alpha-amylases[J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2000, 1543(2):253-274. [25] Robert X, Haser R, Gottschalk TE, et al.The structure of barley alpha-amylase isozyme reveals a novel role of domain C in substrate recognition and binding:A pair of sugar tongs[J]. Structure, 2003, 11(8):973-984. [26] Wang H, Yang L, Ping YH, et al.Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions[J]. PLoS One, 2016, 11(1):1-8. [27] Igarashi K, Hatada Y, Hagihara H.Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences[J]. Appl Environ Microbiol, 1998, 64(9):3282-3289. [28] Prajapati VS, Trivedi UB, Patel KC.A statistical approach for the production of thermostable and alklophilic alpha-amylase from Bacillus amyloliquefaciens KCP2 under solid-state fermentation[J]. 3 Biotech, 2015, 5(2):211-220. [29] Dowd JE, Riggs DS.A comparison of estimates of michaelis-menten kinetic constants from various linear transformations[J]. Journal of Biological Chemistry, 1965, 240(2):863-869. [30] Syu LJ, Chen YH.A study on the α-amylase fermentation performed by Bacillus amyloliquefaciens[J]. Chem Eng, 1997, 65(1):237-247. [31] Lu Z, Wang Q, Jiang S, et al.Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703[J]. Sci Rep, 2016, 6:1-10. [32] Yang H, Liu L, Shin HD, et al.Integrating terminal truncation and oligopeptide fusion for a novel protein engineering strategy to improve specific activity and catalytic efficiency:alkaline-amylase as a case study[J]. Appl Environ Microbiol, 2013, 79(20):6429-6438. [33] Bessler C, Schmitt J, Maurer KH, et al.Directed evolution of a bacterial -amylase:toward enhanced pH-performance and higher specific activity[J]. Protein Sci, 2003, 12(10):2141-2149. [34] Shirai T, Igarashi K, Ozawa T, et al.Ancestral sequence evolutionary trace and crystal structure analyses of alkaline alpha-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins[J]. Proteins, 2007, 66(3):600-610. [35] Robert X, Haser R, Gottschalk TE, et al.The structure of barley alpha-amylase isozyme reveals a novel role of domain C in substrate recognition and binding:A pair of sugar tongs[J]. Structure, 2003, 11(8):973-984. [36] Hondoh H, Kuriki T, Matsuura Y.Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase[J]. J Mol Biol, 2003, 326(1):177-188. [37] Kim MS, Park JT, Kim YW, et al.Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus sol- fataricus in relation to starch processing[J]. Applied Environme-ntal Microbiology, 2004, 70(7):3933-3940. [38] Kobayashi T, Kanai H, Hayashi T, et al.Haloalkaliphilic maltot-riose-forming amylase from the archae bacterium Natronococcus sp. strain Ah-36[J]. Journal of Bacteriology, 1992, 174(11):3439-3444. [39] Wang Y, Feng SY, Zhan T, et al.Improving catalytic efficiency of endo-β-1, 4-xylanase from Geobacillus stearothermophilus by directed evolution and H179 saturation mutagenesis[J]. Journal of Biotechnology, 2013, 168(4):341-347. [40] Goyal N, Gupta JK, Soni SK.A novel raw starch digesting thermostable a-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch[J]. Enzyme Microb Technol, 2005, 37(7):723-734. [41] Yang CH, Liu WH.Purification and properties of a maltotriose-producing a-amylase from Thermobifida fusca[J]. Enzyme Microb Technol, 2004, 35(2):254-260. |
[1] | ZHAO Zhi-xiang, WANG Dian-dong, ZHOU Ya-lin, WANG Pei, YAN Wan-rong, YAN Bei, LUO Lu-yun, ZHANG Zhuo. Control of Pepper Fusarium Wilt by Bacillus subtilis Ya-1 and Its Effect on Rhizosphere Fungal Microbial Community [J]. Biotechnology Bulletin, 2023, 39(9): 213-224. |
[2] | YANG Dong, TANG Ying. Enzymatic Characterization and Degradation Sites of AFB1 Degradation by the Extracellular Enzyme of Bacillus subtilis Strain WTX1 [J]. Biotechnology Bulletin, 2023, 39(4): 93-102. |
[3] | ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast [J]. Biotechnology Bulletin, 2022, 38(6): 136-146. |
[4] | FU Qiao, LIN Qi-lan, XUE Qiang, XIONG Hai-rong, WANG Ya-wei. Effects of CBM41 N-terminal Truncation on the Enzymological Properties of the Pullulanase from Bacillus subtilis 168 [J]. Biotechnology Bulletin, 2022, 38(6): 245-251. |
[5] | ZHU Qiu-yu, DUAN Xu-guo. Recombinant Expression and Site-directed Mutagenesis of L-aspartate-α-decarboxylase,and the Establishment of High-throughput Assay Method [J]. Biotechnology Bulletin, 2022, 38(5): 269-278. |
[6] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[7] | ZHANG Qian, XU Chun-yan, ZHANG Duo, WANG Ya-hui, LIANG Xin-ying, LI Hui. Isolation of Maize Straw-decomposing Bacteria in Yellow-cinnamon Soil and Its Ability of Promoting Decomposition [J]. Biotechnology Bulletin, 2022, 38(12): 233-243. |
[8] | MIAO Hua-biao, CAO Yan, YANG Meng-han, HUANG Zun-xi. The Strategy for Enhancing Foreign Proteins Expression by Signal Peptide in Bacillus subtilis [J]. Biotechnology Bulletin, 2021, 37(6): 259-271. |
[9] | LI Xin-yue, ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu. Effects of Spore Formation Related Gene Deletion on Biomass and Extracellular Enzyme Expression of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2021, 37(3): 35-43. |
[10] | HAO Jun-yao, MA Fu-qiang, YANG Guang-yu. Functional Analysis of Key Residues in the Active Center of Creatinase from Alcaligenes sp. KS-85 [J]. Biotechnology Bulletin, 2021, 37(3): 75-83. |
[11] | TANG Ying, HUANG Jia, DENG Zhan-rui, YANG Xiao-nan. Product Analysis of Degrading Aflatoxin B1 by a Strain Bacillus subtilis [J]. Biotechnology Bulletin, 2021, 37(12): 82-90. |
[12] | ZHAO Hai-yan, SONG Chen-bin, LIU Zheng-ya, MA Xing-rong, SHANG Hui-hui, LI An-hua, GUAN Xian-jun, WANG Jian-she. Cloning,Recombinant Expression and Enzymatic Properties of α-Amylase Gene from Laceyella sp. [J]. Biotechnology Bulletin, 2020, 36(8): 23-33. |
[13] | SUN Xi-lin, JIANG Zhen-yan, LIU Zhi-yi, DAI Lu, SUN Fei, HUANG Wei. Improvement of Thermal Stability of Ganoderma lucidum Protein LZ-8 by Site-directed Mutation of Amino Acids [J]. Biotechnology Bulletin, 2020, 36(1): 23-28. |
[14] | ZHAO Xiao-xia, NIU Shi-quan, WEN Na, SU Feng-feng. Screening and Identification of Biocontrol Bacillus sp. Against Astragalus Root Rot and Its Pot Experiment [J]. Biotechnology Bulletin, 2019, 35(9): 107-111. |
[15] | LING Xie, JI Ming-hua, DUAN Hai-yan, SHI Ji-ping, SUN Jun-song. Construction of An Oxidation Pathway of Xylonic Acid in Bacillus subtilis for Production of Glycolic Acid [J]. Biotechnology Bulletin, 2019, 35(6): 76-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||