[1] Esteller M.Cancer epigenomics:DNA methylomes and histone-modification maps[J]. Nature Reviews Genetics, 2007, 8(4):286-298. [2] Pan Y, Liu G, Zhou F, et al.DNA methylation profiles in cancer diagnosis and therapeutics[J]. Clinical and Experimental Medicine, 2018, 18(1):1-14. [3] Liang G, Weisenberger DJ.DNA methylation aberrancies as a guide for surveillance and treatment of human cancers[J]. Epigenetics, 2017, 12(6):416-432. [4] Audia JE, Campbell RM.Histone modifications and cancer[J]. Cold Spring Harbor Perspectives in Biology, 2016, 8(4):a019521. [5] Choudhary C, Kumar C, Gnad F, et al.Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942):834-840. [6] McCabe MT, Mohammad HP, Barbash O, et al. Targeting histone methylation in cancer[J]. Cancer J, 2017, 23(5):292-301. [7] Biswas S, Rao CM.Epigenetics in cancer:Fundamentals and beyond[J]. Pharmacology & Therapeutics, 2017, 173(5):118-134. [8] Romania P, Bertaina A, Bracaglia G, et al.Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives[J]. Int J Mol Sci, 2012, 13(12):16554-16579. [9] Van Roosbroeck K, Calin GA.Cancer hallmarks and microRNAs:The therapeutic connection[J]. Advances in Cancer Research, 2017, 135(8):119-149. [10] Iorio MV, Piovan C, Croce CM.Interplay between microRNAs and the epigenetic machinery:an intricate network[J]. Biochimica et Biophysica Acta, 2010, 1799(10-12):694-701. [11] Datta J, Kutay H, Nasser MW, et al.Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis[J]. Cancer Research, 2008, 68(13):5049-5058. [12] Lujambio A, Ropero S, Ballestar E, et al.Genetic unmasking of an epigenetically silenced microRNA in human cancer cells[J]. Cancer Research, 2007, 67(4):1424-1429. [13] Wang S, Wu W, Claret FX.Mutual regulation of microRNAs and DNA methylation in human cancers[J]. Epigenetics, 2017, 12(3):187-197. [14] Brueckner B, Stresemann C, Kuner R, et al.The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function[J]. Cancer Research, 2007, 67(4):1419-1423. [15] Hirata Y, Murai N, Yanaihara N, et al.MicroRNA-21 is a candidate driver gene for 17q23-25 amplification in ovarian clear cell carcinoma[J]. BMC Cancer, 2014, 14(1):799-808. [16] Scott GK, Mattie MD, Berger CE, et al.Rapid alteration of microRNA levels by histone deacetylase inhibition[J]. Cancer Research, 2006, 66(3):1277-1281. [17] Vrba L, Jensen TJ, Garbe JC, et al.Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells[J]. PLoS One, 2010, 5(1):e8697. [18] Baer C, Claus R, Plass C.Genome-wide epigenetic regulation of miRNAs in cancer[J]. Cancer research, 2013, 73(2):473-477. [19] Kwon JJ, Factora TD, Dey S et al. A systematic review of mir-29 in cancer[J]. Molecular Therapy Oncolytics, 2019, 12(3):173-194. [20] Fabbri M, Garzon R, Cimmino A, et al.MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. PNAS, 2007, 104(40):15805-15810. [21] Garzon R, Liu S, Fabbri M, et al.MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1[J]. Blood, 2009, 113(25):6411-6418. [22] Xu Q, Jiang Y, Yin Y, et al.A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1[J]. Journal of Molecular Cell Biology, 2013, 5(1):3-13. [23] Xiang Y, Ma N, Wang D, et al.MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine[J]. Oncogene, 2014, 33(3):378-386. [24] Zagorac S, Alcala S, Fernandez Bayon G, et al.DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the mir-17-92 cluster[J]. Cancer Research, 2016, 76(15):4546-4558. [25] Wang L, Zhang X, Jia LT, et al.c-Myc-mediated epigenetic silencing of MicroRNA-101 contributes to dysregulation of multiple pathways in hepatocellular carcinoma[J]. Hepatology, 2014, 59(5):1850-1863. [26] Godlewski J, Nowicki MO, Bronisz A, et al.Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal[J]. Cancer Research, 2008, 68(22):9125-9130. [27] Wang H, Garzon R, Sun H, et al.NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma[J]. Cancer Cell, 2008, 14(5):369-381. [28] Tchio Mantho CI, Harbuzariu A, Gonzalez-Perez RR.Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer[J]. World Journal of Clinical Oncology, 2017, 8(3):178-189. [29] Noonan EJ, Place RF, Pookot D, et al.miR-449a targets HDAC-1 and induces growth arrest in prostate cancer[J]. Oncogene, 2009, 28(14):1714-1724. [30] Sandhu SK, Volinia S, Costinean S, et al.miR-155 targets histone deacetylase 4(HDAC4)and impairs transcriptional activity of B-cell lymphoma 6(BCL6)in the Emu-miR-155 transgenic mouse model[J]. PNAS, 2012, 109(49):20047-20052. [31] Xiao Q, Huang L, Zhang Z, et al.Overexpression of miR-140 inhibits proliferation of osteosarcoma cells via suppression of histone deacetylase 4[J]. Oncology Research, 2017, 25(2):267-275. [32] Luo J, Chen P, Xie W, et al.MicroRNA-138 inhibits cell proliferation in hepatocellular carcinoma by targeting Sirt1[J]. Oncology Reports, 2017, 38(2):1067-1074. [33] Rastgoo N, Abdi J, Hou J, et al.Role of epigenetics-microRNA axis in drug resistance of multiple myeloma[J]. Journal of Hematology & Oncology, 2017, 10(1):121-130. [34] Amodio N, Rossi M, Raimondi L, et al.miR-29s:a family of epi-miRNAs with therapeutic implications in hematologic malignancies[J]. Oncotarget, 2015, 6(15):12837-12861. |