Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (8): 201-209.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1106
Previous Articles Next Articles
PENG Yuan-yuan1, XIAO Xing-ning2, ZHU Long-jiao2, TAO Xiao-qi1, XU Wen-tao2
Received:
2019-11-14
Online:
2020-08-26
Published:
2020-08-27
PENG Yuan-yuan, XIAO Xing-ning, ZHU Long-jiao, TAO Xiao-qi, XU Wen-tao. The Interaction Law Between Small Molecular Substances and Aptamers[J]. Biotechnology Bulletin, 2020, 36(8): 201-209.
[1] Dorst BV, Mehta J, Bekaert K, et al.Recent advances in recognition elements of food and environmental biosensors:A review[J]. Biosensors and Bioelectronics, 2010, 26(4):1178-1194. [2] Sekhon SS, Park GY, Park DY, et al.Aptasensors for pesticide detection[J]. Toxicology and Environmental Health Sciences, 2018, 10(5):229-236. [3] Song KM, Lee S, Ban C.Aptamers and their biological applications[J]. Sensors, 2012, 12(12):612-631. [4] Limongelli V, De TS, Cerofolini L, et al.The G-triplex DNA[J], Angewandte Chemie International Edition, 2013, 52(8):2269-2273. [5] Wang T, Chen C, Larcher LM, et al.Three decades of nucleic acid aptamer technologies:lessons learned, progress and opportunities on aptamer development[J]. Biotechnology Advances, 2019, 37(8):28-50. [6] Mcconnell EM.In vitro selection and characterization of DNA aptamers to a small molecule target[J]. Current Protocols in Chemical Biology, 2017, 9(4):233. [7] Wu Y, Zhan S, Wang L, et al.Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J]. The Analyst, 2014, 139(6):1550-1561. [8] Rajendran M, Ellington AD.Selection of fluorescent aptamer beacons that light up in the presence of zinc[J]. Analytical and Bioanalytical Chemistry, 2008, 390(4):1067-1075. [9] Kim M, Um HJ, Bang S, et al.Arsenic removal from vietnamese groundwater using the Arsenic-Binding DNA Aptamer[J]. Environmental Science & Technology, 2009, 43(24):9335-9340. [10] Bawazer LA, Newman AM, Gu Q, et al.Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering[J]. ACS Nano, 2013, 8(1):387-395. [11] Klussmann S.The aptamer handbook:functional oligonucleotides and their applications[M]. Wiley-VCH:2006. [12] Reinemann C, Stoltenburg R, Strehlitz B.Investigations on the specificity of DNA aptamers binding to ethanolamine.[J]. Analytical Chemistry, 2009, 81(10):3973-3978. [13] Jiang Y, Xu K, Zeng C.Use of electrochemistry in the synthesis of heterocyclic structures[J]. Chemical Reviews, 2018, 118(9):4485-4540. [14] Mannironi C, Di Nardo A, Fruscoloni P, et al.In vitro selection of dopamine RNA ligands[J]. Biochemistry, 1997, 36(32):9726-9734. [15] Nix J, Sussman D, Wilson C.The 1. 3 crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition[J]. Journal of Molecular Biology, 2000, 296(5):1235-1244. [16] Zhou J, Rossi J.Aptamers as targeted therapeutics:current potential and challenges[J]. Nature Reviews Drug Discovery, 2017, 16(3):181. [17] Pheeney CG, Arnold AR, Grodick MA, et al.Multiplexed electrochemistry of DNA-Bound metalloproteins[J]. Journal of the American Chemical Society, 2013, 135(32):11869-11878. [18] 何晓俊. 化学小分子与RNA的键合作用及其对RNA稳定性调控研究[D]. 湘潭:湘潭大学, 2015. He XJ.The RNA-binding and RNA stability studies of regulation by chemical small molecules[D]. Xiangtan:Xiangtan University, 2015. [19] Xiao X, Zhu L, He W, et al.Functional nucleic acids tailoring and its application[J]. TrAC Trends in Analytical Chemistry, 2019, 118:138-157. [20] Adamala K, Engelhart AE, Szostak JW.Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension[J]. Journal of the American Chemical Society, 2015, 137(1):483-489. [21] Kato T, Yano K, Ikebukuro K, et al.Interaction of three-way DNA junctions with steroids[J]. Nucleic Acids Research, 2000, 28(9):1963. [22] Tahiri-Alaoui A, Frigotto L, Manville N, et al.High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands[J]. Nucleic Acids Research, 2002, 30(10):e45. [23] Warner KD, Chen MC, Song W, et al.Structural basis for activity of highly efficient RNA mimics of green fluorescent protein[J]. Nature Structural & Molecular Biology, 2014, 21(8):658. [24] Cassina V, Seruggia D, Beretta GL, et al.Atomic force microscopy study of DNA conformation in the presence of drugs[J]. European Biophysics Journal, 2011, 40(1):59-68. [25] Bawazer LA, Newman AM, Gu Q, et al.Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering[J]. ACS Nano, 2013, 8(1):387-395. [26] 李蓓蕾. 钌(Ⅱ)/钴(Ⅲ)配合物与DNA/RNA作用机理及抗肿瘤活性研究[D]. 湘潭:湘潭大学, 2012. Li BL.DNA-, RNA-binding behaviors and cytotoxic properties of Ru(Ⅱ)and Co(Ⅲ)Complexes[D]. Xiangtan: Xiangtan University, 2012. [27] Wu FY, Xiang YL, Wu YM, et al.Study of interaction of a fluorescent probe with DNA[J]. Journal of Luminescence, 2009, 129(11):1286-1291. [28] Deng H, Bloomfield VA, Benevides JM, et al.Dependence of the raman signature of genomic B-DNA on nucleotide base sequence[J]. Biopolymers:Original Research on Biomolecules, 1999, 50(6):656-666. [29] Gao EJ, Liu L, Zhu MC, et al.Synthesis, characterization, interaction with DNA, and cytotoxic effect in vitro of new mono-and dinuclear Pd(II)and Pt(II)complexes with benzo[d]thiazol-2-amine as the primary ligand[J]. Inorganic Chemistry, 2011, 50(11):4732-4741. [30] Hirohama T, Kuranuki Y, Ebina E, et al.Copper(II)complexes of 1, 10-phenanthroline-derived ligands:studies on DNA binding properties and nuclease activity[J]. Journal of Inorganic Biochemistry, 2005, 99(5):1205-1219. [31] 王君, 王琦, 陈丹丹, 等. DNA与小分子化合物相互作用的研究进展与展望[J]. 辽宁大学学报:自然科学版, 2013, 40(4):289-300. Wang J, Wang Q, Chen DD, et al.The research progress and prospect of interaction of DNA with small molecule compounds[J]. Journal of Liaoning University: Natural Sciences Edition, 2013, 40(4):289-300. [32] Lauhon CT, Szostak JW.RNA aptamers that bind flavin and nicotinamide redox cofactors[J]. Journal of the American Chemical Society, 1995, 117(4):1246-1257. [33] Rajendran M, Ellington AD.Selection of fluorescent aptamer beacons that light up in the presence of zinc[J]. Analytical & Bioanalytical Chemistry, 2008, 390(4):1067-1075. [34] Shen P, Li W, Liu Y, et al.High-throughput low-background g-quadruplex aptamer chemiluminescence assay for ochratoxin A using a single photonic crystal microsphere[J]. Analytical Chemistry, 2017, 89(21):11862-11868. [35] Lu YJ, Ma N, Li YJ, et al.Styryl quinolinium/G-quadruplex complex for dual-channel fluorescent sensing of Ag+ and cysteine[J]. Sensors and Actuators B:Chemical, 2012, 173:295-299. [36] Yang Y, Kochoyan M, Burgstaller P, et al.Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy[J]. Science, 1996, 272(5266):1343-1347. [37] Burgstaller P, Kochoyan M, Famulok M.Structural probing and damage selection of citrullineand arginine-specific RNA aptamers identify base positions required for binding[J]. Nucleic Acids Research, 1995, 23(23):4769-4776. [38] Masud MM, Kuwahara M, Ozaki H, et al.Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX[J]. Bioorg Med Chem, 2004, 12(5):1111-1120. [39] Yang Q, Goldstein IJ, Mei HY, et al.DNA ligands that bind tightly and selectively to cellobiose[J]. Proceedings of the National Academy of Sciences, 1998, 95(10):5462-5467. [40] Srisawat C, Goldstein IJ, Engelke DR.Sephadex-binding RNA ligands:rapid affinity purification of RNA from complex RNA mixtures[J]. Nucleic Acids Res 2001, 29:5. [41] Zimmermann GR, Jenison RD, Wick CL, et al.Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA[J]. Nature Structural Biology, 1997, 4(8):644-649. [42] Stojanovic MN, Prada PD, Landry DW.Fluorescent sensors based on aptamer self-assembly[J]. Journal of the American Chemical Society, 2000, 122(46):11547-11548. [43] Kato T, Takemura T, Yano K, et al.In vitro selection of DNA aptamers which bind to cholic acid[J]. Biochimica et Biophysica Acta, 2000, 1493(1-2):12-18. [44] Sazani PL, Larralde R, Szostak JW.A small aptamer with strong and specific recognition of the triphosphate of ATP[J]. Journal of the American Chemical Society, 2004, 126(27):8370-8371. [45] Roychowdhury-Saha M, Lato SM, Shank ED, et al.Flavin recognition by an RNA aptamer targeted toward FAD[J]. Biochemistry, 2002, 41(8):2492-2499. [46] Grate D, Wilson C.Laser-mediated, site-specific inactivation of RNA transcripts[J]. Proceedings of the National Academy of Sciences, 1999, 96(11):6131-6136. [47] Flinders J, Defina SC, Brackett DM, et al.Recognition of planar and nonplanar ligands in the malachite green-RNA aptamer complex[J]. Chembiochem, 2010, 5(1):62-72. [48] Huang H, Suslov NB, Li NS, et al.A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore[J]. Nature Chemical Biology, 2014, 10(8):686-691. [49] Berens C, Thain A, Schroeder R.A tetracycline-binding RNA aptamer[J]. Bioorganic & Medicinal Chemistry, 2001, 9(10):2549-2556. [50] Burke DH, Hoffman DC, Brown A, et al.RNA aptamers to the peptidyl transferase inhibitor chloramphenicol[J]. Chemistry and Biology, 1997, 4(11):833-843. [51] Tereshko V, Skripkin E, Patel DJ.Encapsulating streptomycin within a small 40-mer RNA.[J]. Chemistry & Biology, 2003, 10(2):175-187. [52] Wallis MG, Schroeder R.The binding of antibiotics to RNA[J]. Progress in Biophysics & Molecular Biology, 1997, 67(2-3):141. [53] Feagin TA, Maganzini N, Soh HT.Strategies for creating structure-switching aptamers[J]. ACS Sensors, 2018, 3(9):1611-1615. [54] Luo Z, He L, Wang J, et al.Developing a combined strategy for monitoring the progress of aptamer selection[J]. Analyst, 2017, 142(17):3136-3139. |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[3] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[4] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[5] | LI Tian-shun, LI Chen-wei, WANG Jia, ZHU Long-Jiao, XU Wen-tao. Efficient Generation of Secondary Libraries During Functional Nucleic Acids Screening [J]. Biotechnology Bulletin, 2023, 39(3): 116-122. |
[6] | LV Yu-jing, WU Dan-dan, KONG Chun-yan, YANG Yu, GONG Ming. Genome-wide Identification of XTH Gene Family and Their Interacting miRNAs and Possible Roles in Low Temperature Adaptation in Jatropha curcas L. [J]. Biotechnology Bulletin, 2023, 39(2): 147-160. |
[7] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
[8] | LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes [J]. Biotechnology Bulletin, 2023, 39(2): 35-50. |
[9] | YIN Guo-ying, LIU Chang, CHANG Yong-chun, YU Wang-jie, WANG Bing, ZHANG Pan, GUO Yu-shuang. Identification of the Cysteine Protease Family and Corresponding miRNAs in Nicotiana tabacum L. and Their Responses to PVY [J]. Biotechnology Bulletin, 2023, 39(10): 184-196. |
[10] | SHEN Yue, TAO Bao-jie, HUA Xia, LV Bing, LIU Li-jun, CHEN Yun. Research Progress in the Interactions of Strigolactone with Hormones on Regulating Root Growth [J]. Biotechnology Bulletin, 2022, 38(8): 24-31. |
[11] | ZHOU Zi-qi, ZHANG Yang-zi, LAN Xin-yue, LIU Yang-er, ZHU Long-jiao, XU Wen-tao. Selection and Application of Light-up Nucleic Acid Aptamers [J]. Biotechnology Bulletin, 2022, 38(5): 240-247. |
[12] | LAN Xin-yue, LIU Ning-ning, ZHU Long-jiao, CHEN Xu, CHU Hua-shuo, LI Xiang-yang, DUAN Nuo, XU Wen-tao. Tetracycline Bivalent Aptamer Non-enzyme Label-free Sensor [J]. Biotechnology Bulletin, 2022, 38(3): 276-284. |
[13] | ZHANG Bin, YANG Xin-xia. Identification of Key Transcription Factors in Response to Salt Stress in Rice [J]. Biotechnology Bulletin, 2022, 38(3): 9-15. |
[14] | ZHANG Jun-feng, LI Meng-ke, WU Zhi-hao, CUI Xiao-long, XIAO wei, ZHANG Shi-ying. Effects of Bacteriophages DCEAV-31 and DCEIV-9 on the Algicidal Characteristics of Algicidal Bacterium Against Microcystis [J]. Biotechnology Bulletin, 2022, 38(11): 250-257. |
[15] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||