Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (1): 77-89.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1080
Previous Articles Next Articles
ZHENG Lu1(), SHEN Ren-fang1,2, LAN Ping1,2()
Received:
2020-08-26
Online:
2021-01-26
Published:
2021-01-15
Contact:
LAN Ping
E-mail:luzheng@issas.ac.cn;plan@issas.ac.cn
ZHENG Lu, SHEN Ren-fang, LAN Ping. Research Progress of Plant Lysine Acetylproteome Modified in Non-histone Protein[J]. Biotechnology Bulletin, 2021, 37(1): 77-89.
植物 | 组织或器官 (处理条件) | 实验方法 | 蛋白 质数 | 位点 数 | 主要生物过程或代谢途径 | 参考 文献 |
---|---|---|---|---|---|---|
拟南芥 | 悬浮细胞、地上部、线粒体、叶绿体 | 抗体亲和富集、LC-MS/MS | 74 | 91 | 光合作用 | [19] |
叶片、长角果、花和种子、根 | 1/2-DE、LC-MS/MS | 57 | 64 | 光合作用 | [20] | |
线粒体 | 抗体亲和富集、LC-MS/MS | 120 | 243 | TCA循环、呼吸链、光呼吸、氨基酸和蛋白质代谢、氧化还原调节 | [5] | |
叶片(赖氨酸去乙酰化酶抑制剂) | 二甲基标记、抗体亲和富集、LC-MS/MS | 1 022 | 2 152 | 光合作用 | [21] | |
21 d幼苗的地上部,乙烯处理 | 梯度离心、二甲基标记、抗体亲和富集、LC-MS/MS | 2 638 | 7 456 | 组蛋白超家族、核糖体、热休克、胁迫/刺激、能量代谢 | [22] | |
不同组织(白天结束和晚上结束时) | 抗体亲和富集、LC-MS/MS | 909 | 1 365 | 捕光和光合作用、翻译、代谢、细胞运输 | [23] | |
水稻 | 悬浮细胞 | 抗体亲和富集、LC-MS/MS | 44 | 60 | 胁迫响应、DNA代谢、氮代谢、生物合成 | [24] |
幼苗 | 抗体亲和富集、LC-MS/MS | 716 | 1 337 | 乙醛酸和二羧酸代谢、碳代谢、光合作用 | [25] | |
愈伤组织、根、叶片和圆锥花序 | 抗体亲和富集、LC-MS/MS | 890 | 1 536 | 蛋白质翻译、叶绿体发育、光合作用、开花和花粉肥力、根分生组织活力 | [26] | |
种子胚(吸胀24 h后) | 抗体亲和富集、LC-MS/MS | 389 | 699 | 翻译、刺激响应、葡萄糖分解代谢、糖酵解 | [27] | |
发育中的水稻花药(减数分裂时期) | 抗体亲和富集、LC-MS/MS | 676 | 1 354 | 染色质沉默、蛋白质折叠、脂肪酸生物合成过程、胁迫响应 | [28] | |
未授粉雌蕊、授粉三/7 d后的种子 | 抗体亲和富集、LC-MS/MS | 972 | 1 817 | 糖酵解/糖异生、TCA循环、氨基酸合成、淀粉和蔗糖代谢 | [29] | |
盛花期15 d的水稻种子 | 抗体亲和富集、LC-MS/MS | 692 | 1 003 | TCA循环、糖酵解/糖异生、戊糖磷酸途径、淀粉合成和代谢、储藏蛋白 | [30] | |
叶片(氧化处理) | 抗体亲和富集、LC-MS/MS | 1 024 | 1 669 | 蛋白质翻译和折叠、光合作用、糖酵解 | [31] | |
幼苗叶片(冷胁迫) | 抗体亲和富集、LC-MS/MS | 866 | 1 353 | 光反应、卡尔文循环 | [32] | |
小麦 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 277 | 416 | 光反应、卡尔文循环 | [33] |
发育中的种子(干旱胁迫) | 抗体亲和富集、LC-MS/MS | 442 | 716 | 碳代谢、淀粉生物合成、蛋白质运输和降解、胁迫响应、转录 | [34] | |
二穗短柄草 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 353 | 636 | 碳代谢、光合作用、碳固定 | [35] |
大豆 | 发育中的种子 | 抗体亲和富集、LC-MS/MS | 245 | 400 | RNA合成和加工、乙酰、信号传导、蛋白质折叠 | [36] |
草莓 | 叶片 | 抗体亲和富集、LC-MS/MS | 684 | 1 392 | 糖代谢、碳代谢、光合作用 | [37] |
云杉 | 部分干燥处理14 d的体细胞胚 | 抗体亲和富集、LC-MS/MS | 556 | 1 079 | 碳代谢、脂肪酸代谢、胁迫响应、核糖体、蛋白酶体、剪接体 | [38] |
豌豆 | 线粒体 | LC-MS/MS | 358 | 664 | 初级代谢、次级代谢、胁迫反应、核酸代谢、蛋白质合成、蛋白质折叠 | [39] |
茶树 | 叶片(氮饥饿和恢复供氮) | 抗体亲和富集、LC-MS/MS | 1 286 | 2 229 | 光合作用、糖酵解、氨基酸代谢、次级代谢(黄酮合成) | [40] |
硅藻 | 细胞(缺氮、缺磷和缺铁胁迫) | 抗体亲和富集、LC-MS/MS | 1 220 | 2 324 | 脂肪酸合成 | [41] |
植物 | 组织或器官 (处理条件) | 实验方法 | 蛋白 质数 | 位点 数 | 主要生物过程或代谢途径 | 参考 文献 |
---|---|---|---|---|---|---|
拟南芥 | 悬浮细胞、地上部、线粒体、叶绿体 | 抗体亲和富集、LC-MS/MS | 74 | 91 | 光合作用 | [19] |
叶片、长角果、花和种子、根 | 1/2-DE、LC-MS/MS | 57 | 64 | 光合作用 | [20] | |
线粒体 | 抗体亲和富集、LC-MS/MS | 120 | 243 | TCA循环、呼吸链、光呼吸、氨基酸和蛋白质代谢、氧化还原调节 | [5] | |
叶片(赖氨酸去乙酰化酶抑制剂) | 二甲基标记、抗体亲和富集、LC-MS/MS | 1 022 | 2 152 | 光合作用 | [21] | |
21 d幼苗的地上部,乙烯处理 | 梯度离心、二甲基标记、抗体亲和富集、LC-MS/MS | 2 638 | 7 456 | 组蛋白超家族、核糖体、热休克、胁迫/刺激、能量代谢 | [22] | |
不同组织(白天结束和晚上结束时) | 抗体亲和富集、LC-MS/MS | 909 | 1 365 | 捕光和光合作用、翻译、代谢、细胞运输 | [23] | |
水稻 | 悬浮细胞 | 抗体亲和富集、LC-MS/MS | 44 | 60 | 胁迫响应、DNA代谢、氮代谢、生物合成 | [24] |
幼苗 | 抗体亲和富集、LC-MS/MS | 716 | 1 337 | 乙醛酸和二羧酸代谢、碳代谢、光合作用 | [25] | |
愈伤组织、根、叶片和圆锥花序 | 抗体亲和富集、LC-MS/MS | 890 | 1 536 | 蛋白质翻译、叶绿体发育、光合作用、开花和花粉肥力、根分生组织活力 | [26] | |
种子胚(吸胀24 h后) | 抗体亲和富集、LC-MS/MS | 389 | 699 | 翻译、刺激响应、葡萄糖分解代谢、糖酵解 | [27] | |
发育中的水稻花药(减数分裂时期) | 抗体亲和富集、LC-MS/MS | 676 | 1 354 | 染色质沉默、蛋白质折叠、脂肪酸生物合成过程、胁迫响应 | [28] | |
未授粉雌蕊、授粉三/7 d后的种子 | 抗体亲和富集、LC-MS/MS | 972 | 1 817 | 糖酵解/糖异生、TCA循环、氨基酸合成、淀粉和蔗糖代谢 | [29] | |
盛花期15 d的水稻种子 | 抗体亲和富集、LC-MS/MS | 692 | 1 003 | TCA循环、糖酵解/糖异生、戊糖磷酸途径、淀粉合成和代谢、储藏蛋白 | [30] | |
叶片(氧化处理) | 抗体亲和富集、LC-MS/MS | 1 024 | 1 669 | 蛋白质翻译和折叠、光合作用、糖酵解 | [31] | |
幼苗叶片(冷胁迫) | 抗体亲和富集、LC-MS/MS | 866 | 1 353 | 光反应、卡尔文循环 | [32] | |
小麦 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 277 | 416 | 光反应、卡尔文循环 | [33] |
发育中的种子(干旱胁迫) | 抗体亲和富集、LC-MS/MS | 442 | 716 | 碳代谢、淀粉生物合成、蛋白质运输和降解、胁迫响应、转录 | [34] | |
二穗短柄草 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 353 | 636 | 碳代谢、光合作用、碳固定 | [35] |
大豆 | 发育中的种子 | 抗体亲和富集、LC-MS/MS | 245 | 400 | RNA合成和加工、乙酰、信号传导、蛋白质折叠 | [36] |
草莓 | 叶片 | 抗体亲和富集、LC-MS/MS | 684 | 1 392 | 糖代谢、碳代谢、光合作用 | [37] |
云杉 | 部分干燥处理14 d的体细胞胚 | 抗体亲和富集、LC-MS/MS | 556 | 1 079 | 碳代谢、脂肪酸代谢、胁迫响应、核糖体、蛋白酶体、剪接体 | [38] |
豌豆 | 线粒体 | LC-MS/MS | 358 | 664 | 初级代谢、次级代谢、胁迫反应、核酸代谢、蛋白质合成、蛋白质折叠 | [39] |
茶树 | 叶片(氮饥饿和恢复供氮) | 抗体亲和富集、LC-MS/MS | 1 286 | 2 229 | 光合作用、糖酵解、氨基酸代谢、次级代谢(黄酮合成) | [40] |
硅藻 | 细胞(缺氮、缺磷和缺铁胁迫) | 抗体亲和富集、LC-MS/MS | 1 220 | 2 324 | 脂肪酸合成 | [41] |
植物 | 组织或器官 | 蛋白质数 /位点数 | 蛋白质比例/% | 保守的乙酰化位点序列 | 参考 文献 | |
---|---|---|---|---|---|---|
1个位点 | ≥4个位点 | |||||
拟南芥 | 地上部 | 2 638/7 456 | 56.6 | 12.6 | KacR,Kac*R,KacK,Kac*K,K*Kac | [22] |
水稻 | 种子 | 692/1 003 | 72 | 4 | Kac*R,Kac*K,KacY,KacF,KacH,K*Kac | [30] |
水稻 | 叶片 | 1 024/1 669 | - | Kac*R,Kac*K,KacS,KacT,KacH,KacN | [31] | |
小麦 | 叶片 | 277/416 | 72 | 4 | KacY,KacH,KacF,LKac,FKac | [33] |
二穗短柄草 | 叶片 | 353/636 | 63 | 10 | KacY,Kac*K,KacH,KacF,Kac*I*K | [35] |
草莓 | 叶片 | 684/1 392 | - | - | L*Kac,F*Kac,KacH,KacY,KacF | [37] |
茶树 | 叶片 | 1 286/2 229 | 62 | 8 | E*KacK,Kac*K,Kac*R,Kac*HK,Kac*N,Kac*S,Kac*T,Kac*D | [40] |
云杉 | 体细胞胚 | 556/1 079 | 57 | 13 | KacY,Kac*F,F*Kac,YKac,KacH,K*Kac,V*Kac | [38] |
植物 | 组织或器官 | 蛋白质数 /位点数 | 蛋白质比例/% | 保守的乙酰化位点序列 | 参考 文献 | |
---|---|---|---|---|---|---|
1个位点 | ≥4个位点 | |||||
拟南芥 | 地上部 | 2 638/7 456 | 56.6 | 12.6 | KacR,Kac*R,KacK,Kac*K,K*Kac | [22] |
水稻 | 种子 | 692/1 003 | 72 | 4 | Kac*R,Kac*K,KacY,KacF,KacH,K*Kac | [30] |
水稻 | 叶片 | 1 024/1 669 | - | Kac*R,Kac*K,KacS,KacT,KacH,KacN | [31] | |
小麦 | 叶片 | 277/416 | 72 | 4 | KacY,KacH,KacF,LKac,FKac | [33] |
二穗短柄草 | 叶片 | 353/636 | 63 | 10 | KacY,Kac*K,KacH,KacF,Kac*I*K | [35] |
草莓 | 叶片 | 684/1 392 | - | - | L*Kac,F*Kac,KacH,KacY,KacF | [37] |
茶树 | 叶片 | 1 286/2 229 | 62 | 8 | E*KacK,Kac*K,Kac*R,Kac*HK,Kac*N,Kac*S,Kac*T,Kac*D | [40] |
云杉 | 体细胞胚 | 556/1 079 | 57 | 13 | KacY,Kac*F,F*Kac,YKac,KacH,K*Kac,V*Kac | [38] |
[1] | Kouzarides T. Acetylation:a regulatory modification to rival phosphorylation?[J]. EMBO Journal, 2000,19(6):1176-1179. |
[2] | Lusser A, Kölle D, Loidl P. Histone acetylation:lessons from the plant kingdom[J]. Trends in Plant Science, 2001,6(2):59-65. |
[3] |
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2018,20(3):156-174.
URL pmid: 30467427 |
[4] | Zhang JM, Sprung R, Pei JM, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli[J]. Molecular & Cellular Proteomics, 2009,8(2):215-225. |
[5] | König AC, Hartl M, Boersema PJ, et al. The mitochondrial lysine acetylome of Arabidopsis[J]. Mitochondrion, 2014,19:252-260. |
[6] | Allfrey VG, Faulkner R, Mirsky AE. Aetylation methylation of histones their possible role in regulation of RNA synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964,51(5):786-794. |
[7] | Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2. 8 Å resolution[J]. Nature, 1997,389(6648):251-260. |
[8] |
Liu X, Yang S, Yu CW, et al. Histone acetylation and plant development[J]. The Enzymes, 2016,40:173-199.
URL pmid: 27776781 |
[9] |
Chen ZJ, Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy[J]. Biochimica et Biophysica Acta, 2007,1769(5-6):295-307.
doi: 10.1016/j.bbaexp.2007.04.007 URL pmid: 17556080 |
[10] |
Kim JM, To TK, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008,49(10):1580-1588.
doi: 10.1093/pcp/pcn133 URL pmid: 18779215 |
[11] |
Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell, 1997,90(4):595-606.
URL pmid: 9288740 |
[12] |
Zhao Y, Jensen ON. Modification-specific proteomics:strategies for characterization of post-translational modifications using enrichment techniques[J]. Proteomics, 2009,9(20):4632-4641.
URL pmid: 19743430 |
[13] |
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Molecular Cell, 2006,23(4):607-618.
URL pmid: 16916647 |
[14] |
Lundby A, Lage K, Weinert BT, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns[J]. Cell Reports, 2012,2(2):419-431.
URL pmid: 22902405 |
[15] |
Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J]. Science, 2010,327(5968):1004-1007.
URL pmid: 20167787 |
[16] |
Nambi S, Gupta K, Bhattacharyya M, et al. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism[J]. The Journal of Biological Chemistry, 2013,288(20):14114-14124.
URL pmid: 23553634 |
[17] |
Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function[J]. Molecular Cell, 2007,25(1):151-159.
URL pmid: 17218278 |
[18] |
Liang W, Malhotra A, Deutscher MP. Acetylation regulates the stability of a bacterial protein:growth stage-dependent modification of RNase R[J]. Molecular Cell, 2011,44(1):160-166.
doi: 10.1016/j.molcel.2011.06.037 URL pmid: 21981926 |
[19] |
Finkemeier I, Laxa M, Miguet L, et al. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis[J]. Plant Physiol, 2011,155(4):1779-1790.
URL pmid: 21311031 |
[20] |
Wu X, Oh MH, Schwarz EM, et al. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis[J]. Plant Physiol, 2011,155(4):1769-1778.
doi: 10.1104/pp.110.165852 URL pmid: 21311030 |
[21] |
Hartl M, Füβl M, Boersema PJ, et al. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis[J]. Molecular Systems Biology, 2017,13(10):949.
URL pmid: 29061669 |
[22] |
Liu SC, Yu FC, Yang Z, et al. Establishment of dimethyl labeling-based quantitative acetylproteomics in Arabidopsis[J]. Molecular & Cellular Proteomics, 2018,17(5):1010-1027.
URL pmid: 29440448 |
[23] | Uhrig RG, Schläpfer P, Roschitzki B, et al. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings[J]. Plant Journal, 2019,99(1):176-194. |
[24] |
Nallamilli BRR, Edelmann MJ, Zhong X, et al. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice(Oryza sativa)[J]. PLoS One, 2014,9(2):e89283.
URL pmid: 24586658 |
[25] |
Xiong Y, Peng X, Cheng Z, et al. A comprehensive catalog of the lysine-acetylation targets in rice(Oryza sativa)based on proteomic analyses[J]. Journal of Proteomics, 2016,138:20-29.
doi: 10.1016/j.jprot.2016.01.019 URL pmid: 26836501 |
[26] | Li Z, Wang Y, Bello BK, et al. Construction of a quantitative acetylomic tissue atlas in rice(Oryza sativa L.)[J]. Molecules, 2018,23(11):2843. |
[27] |
He D, Wang Q, Li M, et al. Global proteome analyses of lysine acetylation and succinylation reveal the widespread involvement of both modification in metabolism in the embryo of germinating rice seed[J]. Journal of Proteome Research, 2016,15(3):879-890.
doi: 10.1021/acs.jproteome.5b00805 URL pmid: 26767346 |
[28] | Li X, Ye J, Ma H, et al. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function[J]. Plant Journal, 2018,93(1):142-154. |
[29] | Wang Y, Hou Y, Qiu J, et al. A quantitative acetylomic analysis of early seed development in rice(Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2017,18(7):1376. |
[30] | Meng X, Lv Y, Mujahid H, et al. Proteome-wide lysine acetylation identification in developing rice(Oryza sativa)seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation[J]. Biochimica et Biophysica Acta(BBA)- Proteins and Proteomics, 2018,1866(3):451-463. |
[31] |
Zhou H, Finkemeier I, Guan W, et al. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves[J]. Plant, Cell & Environment, 2018,41(5):1139-1153.
doi: 10.1111/pce.13100 URL pmid: 29126343 |
[32] | Xue C, Liu S, Chen C, et al. Global proteome analysis links lysine acetylation to diverse functions in Oryza Sativa[J]. Proteomics, 2018,18:1700036. |
[33] |
Zhang Y, Song L, Liang W, et al. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat[J]. Scientific Reports, 2016,6:21069.
doi: 10.1038/srep21069 URL pmid: 26875666 |
[34] |
Zhu GR, Yan X, Zhu D, et al. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynjournal[J]. Journal of Proteomics, 2018,185:8-24.
doi: 10.1016/j.jprot.2018.06.019 URL pmid: 30003963 |
[35] |
Zhen S, Deng X, Wang J, et al. First comprehensive proteome analyses of lysine acetylation and succinylation in seedling leaves of Brachypodium distachyon L.[J]. Scientific Reports, 2016,6:31576.
doi: 10.1038/srep31576 URL pmid: 27515067 |
[36] |
Smith-Hammond CL, Swatek KN, Johnston ML, et al. Initial description of the developing soybean seed protein Lys-N ε-acetylome [J]. Journal of Proteomics, 2014,96:56-66.
doi: 10.1016/j.jprot.2013.10.038 URL pmid: 24211405 |
[37] |
Fang X, Chen W, Zhao Y, et al. Global analysis of lysine acetylation in strawberry leaves[J]. Frontiers in Plant Science, 2015,6:739.
doi: 10.3389/fpls.2015.00739 URL pmid: 26442052 |
[38] | Xia Y, Jing D, Kong L, et al. Global lysine acetylome analysis of desiccated somatic embryos of Picea asperata[J]. Frontiers in Plant Science, 2016,7:01927. |
[39] |
Smith-Hammond CL, Hoyos E, Miernyk JA. The pea seedling mitochondrial N ε-lysine acetylome [J]. Mitochondrion, 2014,19:154-165.
doi: 10.1016/j.mito.2014.04.012 URL pmid: 24780491 |
[40] |
Jiang JT, Gai ZS, Wang Y, et al. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition[J]. BMC Genomics, 2018,19:840.
doi: 10.1186/s12864-018-5250-4 URL pmid: 30477445 |
[41] |
Chen Z, Luo L, Chen RF, et al. Acetylome profiling reveals extensive lysine acetylation of the fatty acid metabolism pathway in the diatom Phaeodactylum tricornutum[J]. Molecular & Cellular Proteomics, 2018,17(3):399-412.
doi: 10.1074/mcp.RA117.000339 URL pmid: 29093020 |
[42] |
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009,325(5942):834-840.
doi: 10.1126/science.1175371 URL pmid: 19608861 |
[43] |
Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns[J]. Expert Review of Proteomics, 2010,7(1):79-92.
URL pmid: 20121478 |
[44] |
Chen Y, Zhao WH, Yang JS, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways[J]. Molecular & Cellular Proteomics, 2012,11(10):1048-1062.
doi: 10.1074/mcp.M112.019547 URL pmid: 22826441 |
[45] |
Hosp F, Lassowskat I, Santoro V, et al. Lysine acetylation in mitochondria:From inventory to function[J]. Mitochondrion, 2017,33:58-71.
doi: 10.1016/j.mito.2016.07.012 URL pmid: 27476757 |
[46] |
Schilling B, Rardin MJ, MacLean BX, et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline:application to protein acetylation and phosphorylation[J]. Molecular & Cellular Proteomics, 2012,11(5):202-214.
doi: 10.1074/mcp.M112.017707 URL pmid: 22454539 |
[47] |
Gao XJ, Li QR, Liu YS, et al. Multi-in-one:Multiple-proteases, one-hour-shot strategy for fast and high-coverage phosphoproteomic investigation[J]. Analytical Chemistry, 2020,92(13):8943-8951.
doi: 10.1021/acs.analchem.0c00906 URL pmid: 32479063 |
[48] |
Humphrey SJ, Azimifar SB, Mann M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics[J]. Nature Biotechnology, 2015,33(9):990-995.
doi: 10.1038/nbt.3327 URL pmid: 26280412 |
[49] |
Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems:Colocation for redox regulation of gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(33):10231-10238.
doi: 10.1073/pnas.1500012112 URL pmid: 26286985 |
[50] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL pmid: 27716505 |
[51] |
Collado-Romero M, Alós E, Prieto P. Unravelling the proteomic profile of rice meiocytes during early meiosis[J]. Frontiers in Plant Science, 2014,5:356.
doi: 10.3389/fpls.2014.00356 URL pmid: 25104955 |
[52] |
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016,529(7584):84-87.
URL pmid: 26738594 |
[53] | 张林刚, 邓西平. 小麦抗旱性生理生化研究进展[J]. 干旱地区农业研究, 2000,18(3):87-92. |
Zhang LG, Deng XP. Advances in studies on physiology and biochemistry of wheat drought resistance[J]. Agricultural Research in the Arid Areas, 2000,18(3):87-92. | |
[54] | 吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010,26(13):75-78. |
Wu W, Zhao J. Advances on plants’ nitrogen assimilation and utilization[J]. Chinese Agricultural Science Bulletin, 2010,26(13):75-78. | |
[55] |
Levitan O, Dinamarca J, Zelzion E, et al. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(2):412-417.
doi: 10.1073/pnas.1419818112 URL pmid: 25548193 |
[56] |
Withers J, Dong X. Post-translational regulation of plant immunity[J]. Current Opinion in Plant Biology, 2017,38:124-132.
doi: 10.1016/j.pbi.2017.05.004 URL pmid: 28538164 |
[57] |
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational modifications in regulation of chloroplast function:recent advances[J]. Frontiers in Plant Science, 2017,8:240.
doi: 10.3389/fpls.2017.00240 URL pmid: 28280500 |
[58] |
Nussinov R, Tsai CJ, Xin F, et al. Allosteric post-translational modification codes[J]. Trends in Biochemical Sciences, 2012,37(10):447-455.
doi: 10.1016/j.tibs.2012.07.001 URL |
[59] |
Weinert BT, Schölz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation[J]. Cell Reports, 2013,4(4):842-851.
doi: 10.1016/j.celrep.2013.07.024 URL |
[60] |
Xie X, Kang HX, Liu WD, et al. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves[J]. Journal of Proteome Research, 2015,14(5):2017-2025.
doi: 10.1021/pr5009724 URL pmid: 25751157 |
[61] |
Serre NBC, Alban C, Bourguignon J, et al. An outlook on lysine methylation of non-histone proteins in plants[J]. Journal of Experimental Botany, 2018,69(19):4569-4581.
doi: 10.1093/jxb/ery231 URL pmid: 29931361 |
[62] |
Hunter T. The age of crosstalk:phosphorylation, ubiquitination, and beyond[J]. Molecular Cell, 2007,28(5):730-738.
doi: 10.1016/j.molcel.2007.11.019 URL pmid: 18082598 |
[63] |
Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications[J]. Molecular Cell, 2008,31(4):449-461.
doi: 10.1016/j.molcel.2008.07.002 URL pmid: 18722172 |
[64] |
Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nature Chemical Biology, 2011,7(1):58-63.
doi: 10.1038/nchembio.495 URL pmid: 21151122 |
[65] |
Kersten B, Agrawal GK, Durek P, et al. Plant phosphoproteomics:an update[J]. Proteomics, 2009,9(4):964-988.
doi: 10.1002/pmic.200800548 URL pmid: 19212952 |
[66] |
Lu Z, Cheng Z, Zhao Y, et al. Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation[J]. PLoS One, 2011,6(12):e28228.
doi: 10.1371/journal.pone.0028228 URL pmid: 22164248 |
[67] |
Vu LD, Gevaert K, De Smet I. Protein language:Post-translational modifications talking to each other[J]. Trends in Plant Science, 2018,23(12):1068-1080.
doi: 10.1016/j.tplants.2018.09.004 URL pmid: 30279071 |
[68] |
Filipčík P, Curry JR, Mace PD. When worlds collide-mechanisms at the interface between phosphorylation and ubiquitination[J]. Journal of Molecular Biology, 2017,429(8):1097-1113.
doi: 10.1016/j.jmb.2017.02.011 URL pmid: 28235544 |
[69] |
Gao X, Hong H, Li WC, et al. Downregulation of rubisco activity by non-enzymatic acetylation of RbcL[J]. Molecular Plant, 2016,9(7):1018-1027.
doi: 10.1016/j.molp.2016.03.012 URL pmid: 27109602 |
[1] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[2] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[3] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[6] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[7] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[8] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[9] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[10] | LI Ping, GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao, PENG You-lin. Research Progress of Sterol in Regulating Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(7): 90-98. |
[11] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
[12] | YUE Man-fang, ZHANG Chun, WU Zhong-yi. Research Progress in the Structural and Functional Analysis of Plant Transcription Factor AP2/ERF Protein Family [J]. Biotechnology Bulletin, 2022, 38(12): 11-26. |
[13] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[14] | QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(10): 29-33. |
[15] | SU Yu, LI Zong-yun, HAN Yong-hua. Advances in Plant Vacuolar Processing Enzymes [J]. Biotechnology Bulletin, 2021, 37(6): 181-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||