Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (2): 80-87.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0848
Previous Articles Next Articles
ZHANG Ting-huan(), LONG Xi, GUO Zong-yi, CHAI Jie()
Received:
2020-07-09
Online:
2021-02-26
Published:
2021-02-26
Contact:
CHAI Jie
E-mail:ztinghuan@163.com;jiechai91@163.com
ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes[J]. Biotechnology Bulletin, 2021, 37(2): 80-87.
Primer name | Primer sequence | Length/bp |
---|---|---|
GDF6 | F:CTCGAGCTACTAAATGACAG | 20 |
R:TCTCCTTCCTCACTGCCTGT | 20 | |
Runx1t1 | F:ATCGGGAATTCCTTCACAGGC | 21 |
R:GCTTTTTGCAGCTCCGTCAT | 20 | |
Galnt3 | F:ACGCAGGTGATTGCTCGTAA | 20 |
R:AGGTCTGGCACATACGCTTC | 20 | |
RAB10 | F:ATGTACTTGCTCAGCTCAACT | 21 |
R:AGGGACTCAAGCACATTATCCA | 22 |
Primer name | Primer sequence | Length/bp |
---|---|---|
GDF6 | F:CTCGAGCTACTAAATGACAG | 20 |
R:TCTCCTTCCTCACTGCCTGT | 20 | |
Runx1t1 | F:ATCGGGAATTCCTTCACAGGC | 21 |
R:GCTTTTTGCAGCTCCGTCAT | 20 | |
Galnt3 | F:ACGCAGGTGATTGCTCGTAA | 20 |
R:AGGTCTGGCACATACGCTTC | 20 | |
RAB10 | F:ATGTACTTGCTCAGCTCAACT | 21 |
R:AGGGACTCAAGCACATTATCCA | 22 |
primer name | DNA primer sequence | Length/bp |
---|---|---|
GDF6 | F:AGGGGACACAAGTCCCTGTC | 20 |
R:AGAACTGCCCGCCACCAACG | 20 | |
Runx1t1 | F:GCCAAAGACTGATCTGAGGGA | 21 |
R:GGAGAAGTGTCTTCCCAGCC | 20 | |
Galnt3 | F:TAGAACCGCTGCAGAAACCC | 20 |
R:TGAGTGTGTGGATGCAGGTG | 20 | |
RAB10 | F:CTCGAGTCCCACAGACAATTC | 20 |
R:CAAAGCCCTAATAGTAAGCAG | 20 |
primer name | DNA primer sequence | Length/bp |
---|---|---|
GDF6 | F:AGGGGACACAAGTCCCTGTC | 20 |
R:AGAACTGCCCGCCACCAACG | 20 | |
Runx1t1 | F:GCCAAAGACTGATCTGAGGGA | 21 |
R:GGAGAAGTGTCTTCCCAGCC | 20 | |
Galnt3 | F:TAGAACCGCTGCAGAAACCC | 20 |
R:TGAGTGTGTGGATGCAGGTG | 20 | |
RAB10 | F:CTCGAGTCCCACAGACAATTC | 20 |
R:CAAAGCCCTAATAGTAAGCAG | 20 |
[1] |
Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 URL pmid: 19167326 |
[2] |
Gagan J, Dey BK, Layer R, et al. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation[J]. J Biol Chem, 2011,286(22):19431-19438.
URL pmid: 21471220 |
[3] |
Hupkes M, Sotoca AM, Hendriks JM, et al. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells[J]. BMC Mol Biol, 2014,15:1.
doi: 10.1186/1471-2199-15-1 URL pmid: 24467925 |
[4] |
Eichner LJ, Perry MC, Dufour CR, et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[J]. Cell Metab, 2010,12(4):352-361.
doi: 10.1016/j.cmet.2010.09.002 URL pmid: 20889127 |
[5] |
Hou X, Tang Z, Liu H, et al. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs[J]. PLoS One, 2012,7(12):e52123.
doi: 10.1371/journal.pone.0052123 URL pmid: 23284895 |
[6] |
Knezevic I, Patel A, Sundaresan NR, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J]. J Biol Chem, 2012,287(16):12913-12926.
doi: 10.1074/jbc.M111.331751 URL pmid: 22367207 |
[7] |
Fang J, Song XW, Tian J, et al. Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J]. Apoptosis, 2012,17(4):410-423.
doi: 10.1007/s10495-011-0683-0 URL pmid: 22119805 |
[8] |
Liu W, Cao H, Ye C, et al. Hepatic miR-378 targets p110alpha and controls glucose and lipid homeostasis by modulating hepatic insulin signalling[J]. Nat Commun, 2014,5:5684.
doi: 10.1038/ncomms6684 URL pmid: 25471065 |
[9] |
Carrer M, Liu N, Grueter CE, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*[J]. Proc Natl Acad Sci USA, 2012,109(38):15330-15335.
doi: 10.1073/pnas.1207605109 URL pmid: 22949648 |
[10] |
Kahai S, Lee SC, Lee DY, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7[J]. PLoS One, 2009,4(10):e7535.
doi: 10.1371/journal.pone.0007535 URL pmid: 19844573 |
[11] |
Kim HS, Lee KS, Bae HJ, et al. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer[J]. Oncotarget, 2015,6(10):8089.
doi: 10.18632/oncotarget.3512 URL pmid: 25797269 |
[12] |
Zhang C, Liu J, Tan C, et al. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis[J]. Oncotarget, 2016,7(8):8783.
doi: 10.18632/oncotarget.7088 URL pmid: 26840028 |
[13] | Tan SM, Lieberman J. Capture and identification of miRNA targets by biotin pulldown and RNA-seq[M]//Dassi E(eds)Post-Transcriptional Gene Regulation, New York: Humaoo Press, 2016, 211-228. |
[14] |
Dragomir MP, Knutsen E, Calin GA. SnapShot:unconventional miRNA functions[J]. Cell, 2018,174(4):1038.
doi: 10.1016/j.cell.2018.07.040 URL pmid: 30096304 |
[15] |
Chai J, Chen L, Luo Z, et al. Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration[J]. Biosci Biotechnol Biochem, 2018,82(7):1081-1089.
doi: 10.1080/09168451.2018.1459175 URL pmid: 29658390 |
[16] | 汪瑞婷, 宋懿朋, 李常银, 等. miR-378 转基因小鼠脂肪组织的代谢表型分析[J]. 中国细胞生物学学报, 2019,41(7):1377-1386. |
Wang RT, Song YP, Li CY, et al. Metabolomics phenotypes of adipose tissues from miR-378 transgenic mice[J]. Chinese Journal of Cell Biology, 2019,41(7):1377-1386. | |
[17] | 张阳阳, 戴立胜, 周乾, 等. miR-378在牛不同组织中的表达规律及功能分析[J]. 黑龙江动物繁殖, 2014,22(3):15-18. |
Zhang YY, Dai LS, Zhou Q, et al. Expression and functional analysis of mir-378 in different tissues of cattle[J]. Heilongjiang Journal of Animal Reproduction, 2014,22(3):15-18. | |
[18] |
Xu LL, Shi CM, Xu GF, et al. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes[J]. Cell Biochemistry and Biophysics, 2014,70(2):771-776.
doi: 10.1007/s12013-014-9980-x URL pmid: 24771406 |
[19] |
Gerin I, Bommer GT, Mccoin CS, et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis[J]. Am J Physiol Endocrinol Metab, 2010,299(2):E198-E206.
doi: 10.1152/ajpendo.00179.2010 URL pmid: 20484008 |
[20] |
Pan D, Mao C, Quattrochi B, et al. MicroRNA-378 controls classical brown fat expansion to counteract obesity[J]. Nat Commun, 2014,5:4725.
doi: 10.1038/ncomms5725 URL pmid: 25145289 |
[21] | Kim J, Okla M, Erickson A, et al. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378[J]. Journal of Biological Chemistry, 2016,291(39):20551-20562. |
[22] | Xu L, Ma X, Verma NK, et al. Ablation of PPAR γ in subcutaneous fat exacerbates age-associated obesity and metabolic decline[J]. Aging Cell, 2018,17(2):e12721. |
[23] | 刘亚茹, 苗志国, 高明磊, 等. PPARγ 在动物脂肪发育中的研究进展[J]. 黑龙江畜牧兽医, 2019(1):32-35. |
Liu YR, Miao ZG, Gao ML, et al. Research advance on PPARγ in animal adipose tissue[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(1):32-35. | |
[24] | Seiri P, Abi A, Soukhtanloo M. PPAR-γ:Its ligand and its regulation by microRNAs[J]. J Cell Biochem, 2019,120(7):10893-10908. |
[25] |
Schreiber R, Diwoky C, Schoiswohl G, et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue[J]. Cell Metab, 2017,26(5):753-763.
URL pmid: 28988821 |
[26] | Schreiber R, Xie H, Schweiger M. Of mice and men:The physiological role of adipose triglyceride lipase(ATGL)[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2019,1864(6):880-899. |
[27] | Sortica D, Rheinheimer J, Moehlecke M, et al. CGI-58 gene expression is decreased in the subcutaneous adipose tissue of patients with obesity[S]. 21st European Congress of Endocrinology:BioScientifica, 2019. |
[28] |
Korbelius M, Vujic N, Sachdev V, et al. ATGL/CGI-58-dependent hydrolysis of a lipid storage pool in murine enterocytes[J]. Cell Rep, 2019,28(7):1923-1934.
doi: 10.1016/j.celrep.2019.07.030 URL pmid: 31412256 |
[29] |
Spiegelman BM. Banting Lecture 2012:Regulation of adipogenesis:toward new therapeutics for metabolic disease[J]. Diabetes, 2013,62(6):1774-1782.
doi: 10.2337/db12-1665 URL |
[30] |
Huang N, Wang J, Xie W, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1[J]. Biochem Biophys Res Commun, 2015,457(1):37-42.
doi: 10.1016/j.bbrc.2014.12.055 URL pmid: 25529446 |
[31] | Payne VA, Au WS, Lowe CE, et al. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis[J]. Biochemical Journal, 2010,425(1):215-224. |
[32] |
Wang SS, Huang HY, Chen SZ, et al. Gdf6 induces commitment of pluripotent mesenchymal C3H10T1/2 cells to the adipocyte lineage[J]. FEBS J, 2013,280(11):2644-2651.
doi: 10.1111/febs.12256 URL pmid: 23527555 |
[33] | Deng K, Ren C, Liu Z, et al. Characterization of RUNX1T1, an adipogenesis regulator in ovine preadipocyte differentiation[J]. Int J Mol Sci, 2018,19(5):1300. |
[34] | Sano H, Roach WG, Peck GR, et al. Rab10 in insulin-stimulated GLUT4 translocation[J]. Biochemical Journal, 2008,411(1):89-95. |
[35] |
Chen Y, Wang Y, Zhang J, et al. Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes[J]. J Cell Biol, 2012,198(4):545-560.
doi: 10.1083/jcb.201111091 URL pmid: 22908308 |
[36] |
Friesen M, Cowan CA. Adipocyte metabolism and insulin signaling perturbations:insights from genetics[J]. Trends in Endocrinology & Metabolism, 2019,30(6):396-406.
doi: 10.1016/j.tem.2019.03.002 URL pmid: 31072658 |
[37] |
Benet-Pag SA, Orlik P, Strom TM, et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia[J]. Human Molecular Genetics, 2004,14(3):385-390.
doi: 10.1093/hmg/ddi034 URL pmid: 15590700 |
[38] |
Ichikawa S, Sorenson AH, Austin AM, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23(Fgf23)concentrations and hyperphosphatemia despite increased Fgf23 expression[J]. Endocrinology, 2009,150(6):2543-2550.
doi: 10.1210/en.2008-0877 URL pmid: 19213845 |
[39] |
Awan HM, Shah A, Rashid F, et al. Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression[J]. RNA Biology, 2018,15(1):55-61.
doi: 10.1080/15476286.2017.1391441 URL pmid: 29028450 |
[40] | Phatak P, Donahue JM. Biotinylated micro-RNA pull down assay for identifying miRNA targets[J]. Bio Protocol, 2017,7(9):e2253. |
[41] | Li X, Pritykin Y, Concepcion CP, et al. High-resolution in vivo identification of miRNA targets by Halo-Enhanced Ago2 Pulldown[J]. BioRxiv, 2019: 820548. |
[1] | ZHANG Ting-huan, GUO Zong-yi, CHAI Jie, PAN Hong-mei, ZHANG Liang, CHEN Lei, LONG Xi. Effects of Sequence Variation on the Biogenesis and Target Relationship of miR-378 [J]. Biotechnology Bulletin, 2022, 38(1): 205-214. |
[2] | HONG Jun, WEI Xia-yi, JI Bing-jie, YE Yan-xin, CHENG Tian-ci. Change of Differentially Expressed Genes and SNP Before or After Pseudomonas aeruginosa Resistance to Tachyplesin I [J]. Biotechnology Bulletin, 2021, 37(9): 191-202. |
[3] | ZHANG Ting-huan, ZHANG Li-juan, CHEN Si-qing, GUO Zong-yi. Effects of the Polymorphism of the Seed Sequence in Porcine miR-378 on Its Function and Carcass Traits [J]. Biotechnology Bulletin, 2021, 37(6): 154-162. |
[4] | LI Ling, YANG Li-xia, GUO Mei. Function of Transcription Factor CNR in the Ripening Process of Tomato Fruit [J]. Biotechnology Bulletin, 2021, 37(2): 51-62. |
[5] | HU Bin-yue, HU Yang, CHENG Wen-min, ZHAO Su-mei, ZHAO Hong-Ye, WEI Hong-Jiang. Lipid Droplet Formation in the Pre-adipocytes of Leptin-overexpressed Pig [J]. Biotechnology Bulletin, 2020, 36(8): 111-119. |
[6] | JI Hui, WANG Hui, CHAI Zhi-xin, WANG Ji-kun, LUO Xiao-lin, JI Qiu-mei, XIN Jin-wei, ZHONG Jin-cheng. Precursor Cloning and Tissue Expression Analysis of Yak miR-378 [J]. Biotechnology Bulletin, 2019, 35(1): 58-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||