Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0797
LI Hai-chao(), XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing()
Received:
2020-07-01
Online:
2021-03-26
Published:
2021-04-02
Contact:
GUAN Ruo-bing
E-mail:lihaichao@cemps.ac.cn;guanruobing@126.com
LI Hai-chao, XIE Fei, ZHANG Yuan-qi, GUAN Ruo-bing. Effects of Resistant and Sensitive Rice Varieties on Gut Microbiota of Nilaparvata lugens[J]. Biotechnology Bulletin, 2021, 37(3): 1-9.
Sample | observed species | chao | ace | shannon | simpson | coverage |
---|---|---|---|---|---|---|
mean(RHT.1D) | 388.66667 | 395.44461 | 395.11502 | 1.45736 | 0.51068 | 0.99972 |
SD(RHT.1D) | 192.10501 | 190.41556 | 191.33268 | 0.23077 | 0.18074 | 0.00009 |
mean(TN1.1D) | 192.33333 | 233.66591 | 267.93055 | 1.92246 | 0.31738 | 0.99946 |
SD(TN1.1D) | 93.32917 | 65.20748 | 27.16002 | 0.99904 | 0.17186 | 0.00036 |
mean(ZH11.1D) | 251.66667 | 255.6381 | 254.37961 | 2.03145 | 0.35986 | 0.99988 |
SD(ZH11.1D) | 50.73789 | 51.35924 | 50.2521 | 0.50533 | 0.11153 | 0.00002 |
mean(RHT.3D) | 253 | 260.98931 | 259.054 | 1.46526 | 0.50256 | 0.99977 |
SD(RHT.3D) | 76.5441 | 76.10176 | 79.18294 | 0.34932 | 0.08544 | 0.00014 |
mean(TN1.3D) | 282.33333 | 296.16628 | 292.6945 | 1.62864 | 0.37817 | 0.99963 |
SD(TN1.3D) | 39.10669 | 43.00768 | 41.60751 | 0.04288 | 0.07577 | 0.00015 |
mean(ZH11.3D) | 181 | 216.55371 | 220.79586 | 0.91988 | 0.57233 | 0.99945 |
SD(ZH11.3D) | 93.95212 | 61.23732 | 58.88241 | 0.57029 | 0.28043 | 0.00014 |
Sample | observed species | chao | ace | shannon | simpson | coverage |
---|---|---|---|---|---|---|
mean(RHT.1D) | 388.66667 | 395.44461 | 395.11502 | 1.45736 | 0.51068 | 0.99972 |
SD(RHT.1D) | 192.10501 | 190.41556 | 191.33268 | 0.23077 | 0.18074 | 0.00009 |
mean(TN1.1D) | 192.33333 | 233.66591 | 267.93055 | 1.92246 | 0.31738 | 0.99946 |
SD(TN1.1D) | 93.32917 | 65.20748 | 27.16002 | 0.99904 | 0.17186 | 0.00036 |
mean(ZH11.1D) | 251.66667 | 255.6381 | 254.37961 | 2.03145 | 0.35986 | 0.99988 |
SD(ZH11.1D) | 50.73789 | 51.35924 | 50.2521 | 0.50533 | 0.11153 | 0.00002 |
mean(RHT.3D) | 253 | 260.98931 | 259.054 | 1.46526 | 0.50256 | 0.99977 |
SD(RHT.3D) | 76.5441 | 76.10176 | 79.18294 | 0.34932 | 0.08544 | 0.00014 |
mean(TN1.3D) | 282.33333 | 296.16628 | 292.6945 | 1.62864 | 0.37817 | 0.99963 |
SD(TN1.3D) | 39.10669 | 43.00768 | 41.60751 | 0.04288 | 0.07577 | 0.00015 |
mean(ZH11.3D) | 181 | 216.55371 | 220.79586 | 0.91988 | 0.57233 | 0.99945 |
SD(ZH11.3D) | 93.95212 | 61.23732 | 58.88241 | 0.57029 | 0.28043 | 0.00014 |
[1] | Cheng JA, Zhu JL, Zhu ZR, et al. Rice planthopper out break and environment regulation[J] . J Environ Entomol, 2008,30(2):176-182. |
[2] | Nagata T. Insecticide resistance and chemical control of the brown planthopper, Nilaparvata lugens[J] . Bull Kyushun Nat Agric Exp Sta, 1982,22(1):49-164. |
[3] | Moran NA, Plague GR, Sandstrom JP, et al. A genomic perspective on nutrient provisioning by bacterial symbionts of insects[J] . Proc Natl Acad Sci USA, 2003,100(Suppl 2):14543-14548. |
[4] | Zientz E, Dandekar T, Gross R. Metabolic interdependence of obli-gate intracellular bacteria and their insect hosts[J] . Mol Biol R, 2004,68(4):745-770. |
[5] | Dillon RJ, Vennard CT, Buckling A, et al. Diversity of locust gut bacteria protects against pathogen invasion[J] . Ecol Lett, 2005,8(12):1291-1298. |
[6] |
Dong YM, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites[J] . PLoS Pathogens, 2009,5(5):e1000423.
doi: 10.1371/journal.ppat.1000423 URL pmid: 19424427 |
[7] | Wei G, Lai YL, Wang GD, et al. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality[J] . Proc Natl Acad Sci USA, 2017,114(23):5994-5999. |
[8] | Kikuchi Y, Hayatsu M, Hosokawa T, et al. Symbiont-mediated insecticide resistance[J] . Proc Natl Acad Sci USA, 2012,109(22):8618-8622. |
[9] |
Xia XF, Zheng DD, Zhong HZ, et al. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella(L.)and a possible relationship with insecticide resistance[J] . PLoS One, 2013,8(7):e68852.
URL pmid: 23894355 |
[10] | Cheng D, Guo Z, Riegler M, et al. Gut symbiont enhances insecticide resistance in a significant pest, the orient fruit fly Bactrocera dorsalis(Hendel)[J] . Microbiome, 2017,5(1):13. |
[11] |
Kerry MO, Nancy A. Moran, Martha S. et al. Variation in resistance to parasitism in aphids is due to symbionts not host genotype[J] . Proc Natl Acad Sci USA, 2005,102(36):12795-12800.
URL pmid: 16120675 |
[12] | Kerry MO, Clesson HH. Variations on a protective theme:Hamiltonella defensa infections in aphids variably impact parasitoid success[J] . Curr Opin Insect Science, 2019,32:1-7. |
[13] | Rasmussen RA, Khalil MAK. Global production of methane by termites[J] . Nature, 1983,301(5902):700-702. |
[14] | Vorburger C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids[J] . Insect Science, 2014,21(3):251-264. |
[15] | Simon JC, Carre S, Boutin M, et al. Host-based divergence in populations of the pea aphid:insights from nuclear markers and the prevalence of facultative symbionts[J] . Proc Biol Sci, 2003,270(1525):1703-1712. |
[16] | Leonardo TE, Mondor EB. Symbiont modifies host life-history traits that affect gene flow[J] . P Roy Soc B-Biol Sci, 2006,273(1590):1079-1084. |
[17] | Lu ZX, Yu XP, Chen JM, et al. Dynamics of yeast-like symbiote and its relationship with the virulence of brown planthopper, Nilaparvata lugens Stål, to resistant rice varieties[J] . J Asia-Pac Entomol, 2004,7(3):317-323. |
[18] | Shentu XP, Li DT, Xu JF, et al. Effects of fungicides on the yeast-like symbiotes and their host, Nilaparvata lugens Stål(Hemiptera:Delphacidae)[J] . Pestic Biochem Phys, 2016,128:16-21. |
[19] | Shi W, Syrenne R, Sun JZ, et al. Molecular approaches to study the insect gut symbiotic microbiota at the “omics” age[J] . Insect Science, 2010,17(3):199-219. |
[20] | 杨晓晴, 王正亮, 王天召, 等. 基于16S rRNA高通量测序的灰飞虱体内细菌群落结构及多样性分析[J] . 昆虫学报, 2018,61(2):200-208. |
Yang XQ, Wang ZL, Wang TZ, et al. Analysis of the bacterial community structure and diversity in the small brown planthopper. Laodelphax striatellus(Hemiptera:Delphacidae)by 16S rRNA high-throughput sequencing[J] . Acta Entomologica Sinica, 2018,61(2):200-208. | |
[21] | 王天召, 王正亮, 朱杭锋, 等. 基于高通量测序的褐飞虱肠道微生物多样性分析[J] . 昆虫学报, 2019,62(3):323-333. |
Wang TZ, Wang ZL, Zhu HF, et al. Analysis of the gut bacterial diversity of the brown planthopper, Nilaoarvata lugens(Hemip-tera:Delphacidae)by high-throughput sequencing[J] . Acta Entomologica Sinica, 2019,62(3):323-333. | |
[22] |
Li F, Li P, Hua HX, et al. Diversity, tissue localization, and infection pattern of bacterial symbionts of the white-backed planthopper, Sogatella furcifera(Hemiptera:Delphacidae)[J] . Microb Ecol, 2020,79:720-730.
URL pmid: 31595328 |
[23] | 王国超, 傅强, 赖凤香, 等. 褐飞虱体内类酵母共生菌与氨基酸营养的关系[J] . 昆虫学报, 2005,48(4):483-490. |
Wang GC, Fu Q, Lai FX, et al. Relationship between yeast-like symbiotes and amino acid requirements in the rice brown planthopper, Nilaparvata lugens Stal(Homoptera:Delphacidae)[J] . Acta Entomologica Sinica, 2005,48(4):483-490. | |
[24] | 吕仲贤, 俞晓平, 陈建明, 等. 共生菌对褐飞虱生长发育和生殖的影响[J] . 植物保护学报, 2001,28(3):193-197. |
Lv ZX, Yu XP, Chen JM, et al. The effect of endosymbiote on the development and production of brown planthopper Nilaparvata lugens Stal[J] . Acta Phytophylacica Sinica, 2001,28(3):193-197. | |
[25] | Morrison M, Pope PB, Denman SE, et al. Plant biomass degradation by gut microbiomes:more of the same or something new[J] . Curr Opin Biotechnol, 2009,20(3):358-363. |
[26] | Frago E, Dicke M, Godfray HCJ. Insect symbionts as hidden players in insect-plant interactions[J] . Trends Ecol Evol, 2012,27(12):705-711. |
[27] | Pang K, Dong SZ, Hou Y, et al. Cultivation, identification and quantification of one species of yeast-like symbiotes, Candida, in the rice brown planthopper, Nilaparvata lugens[J] . Insect Science, 2012,19(4):477-484. |
[28] | Yun JH, Roh SW, Whon TW, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host[J] . Appl Environ Microb, 2014,80(17):5254-5264. |
[29] | Koga R, Tsuchida T, Sakurai M, et al. Selective elimination of aphid endosymbionts:effects of antibiotic dose and host genotype, and fitness consequences[J] . FEMS Microbiol Ecol, 2007,60(2):229-239. |
[30] | Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype[J] . Proc Natl Acad Sci USA, 2005,102(36):12795-12800. |
[31] | Koga R, Tsuchida T, Fukatsu T. Changing partners in an obligate symbiosis:a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid[J] . Proc Biol Sci, 2003,270(1533):2543-2550. |
[32] | Ojha A, Zhang WQ. A comparative study of microbial community and dynamics of Asaia in the brown planthopper from susceptible and resistant rice varieties[J] . BMC Microbiol, 2019,19:139. |
[33] | Briones-Roblero CI, Rodriguez-Diaz R, Santiago-Cruz JA, et al. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus(Curculionidae:Scolytinae)[J] . Folia Microbiol(Praha), 2017,62(1):1-9. |
[34] | Hedges LM, Brownlie JC, O’Neill SL, et al. Wolbachia and virus protection in insects[J] . Science, 2008,322(5902):702. |
[35] |
Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster[J] . PLoS Biol, 2008,6(12):e2.
URL pmid: 19222304 |
[36] | Xu HX, Zheng XS, Yang YJ, et al. Changes in endosymbiotic bacteria of brown planthoppers during the process of adaptation to different resistant rice varieties[J] . Environ Entomol, 2015,44(3):582-587. |
[1] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[2] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[3] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[4] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[5] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[6] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[7] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[8] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[9] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[10] | LI Qi, YANG Xiao-lei, LI Xiao-lin, SHEN You-lei, LI Jian-hong, YAO Tuo. Identification of Phytate Phosphorus-solubilizing PGPB in Avena sativa Rhizosphere from Alpine Grassland and Functional Characteristics of Dominant Genus Pseudomonas sp. [J]. Biotechnology Bulletin, 2023, 39(3): 243-253. |
[11] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[12] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
[13] | JIANG Nan, SHI Yang, ZHAO Zhi-hui, LI Bin, ZHAO Yi-hui, YANG Jun-biao, YAN Jia-ming, JIN Yu-fan, CHEN Ji, HUANG Jin. Expression and Functional Analysis of OsPT1 Gene in Rice Under Cadmium Stress [J]. Biotechnology Bulletin, 2023, 39(1): 166-174. |
[14] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice [J]. Biotechnology Bulletin, 2022, 38(9): 158-166. |
[15] | GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress [J]. Biotechnology Bulletin, 2022, 38(9): 226-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||