Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 154-164.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1211
Previous Articles Next Articles
ZHAO A-hui1(), WANG Xian-guo1, DONG Jian1,2, HOU Zuo3, ZHAO Wan-chun1,2, GAO Xiang1,2, YANG Ming-ming1,2()
Received:
2020-09-24
Online:
2021-05-26
Published:
2021-06-11
Contact:
YANG Ming-ming
E-mail:ahui96914@163.com;myang@nwsuaf.edu.cn
ZHAO A-hui, WANG Xian-guo, DONG Jian, HOU Zuo, ZHAO Wan-chun, GAO Xiang, YANG Ming-ming. Advances in the Study of Phospholipase C Response to Stress in Plants[J]. Biotechnology Bulletin, 2021, 37(5): 154-164.
[1] | Aloulou A, Rahier R, Arhab Y, et al. Phospholipases:an overview[J]. Methods in Molecular Biology, 2018,1835:69-105. |
[2] |
Amarjeet S, Poonam K, Amita P, et al. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice[J]. PLoS One, 2013,8(4):e62494.
doi: 10.1371/journal.pone.0062494 URL |
[3] |
Chen X, Li L, Xu B, et al. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development[J]. Plant Cell and Environment, 2019,42(5):1441-1457.
doi: 10.1111/pce.v42.5 URL |
[4] |
Li L, He Y, Wang Y, et al. Arabidopsis PLC2 is involved in auxin-modulated reproductive development[J]. The Plant Journal, 2015,84(3):504-515.
doi: 10.1111/tpj.2015.84.issue-3 URL |
[5] |
Kadamur G, Ross EM. Mammalian phospholipase C[J]. Annual Review of Physiology, 2013,75:127-154.
doi: 10.1146/annurev-physiol-030212-183750 pmid: 23140367 |
[6] |
Moigne VL, Rottman M, Goulard C, et al. Bacterial phospholipases C as vaccine candidate antigens against cystic fibrosis respiratory pathogens:The mycobacterium abscessus model[J]. Vaccine, 2015,33(18):2118-2124.
doi: 10.1016/j.vaccine.2015.03.030 URL |
[7] |
Vossen JH, Abd-El-Haliem A, Fradin EF, et al. Identification of tomato phosphatidylinositol-specific phospholipase-C(PI-PLC)family members and the role of PLC4 and PLC6 in HR and disease resistance[J]. The Plant Journal, 2010,62(2):224-239.
doi: 10.1111/j.1365-313X.2010.04136.x pmid: 20088897 |
[8] |
Roberts MF, Khan HM, Rebecca G, et al. Search and subvert:minimalist bacterial phosphatidylinositol-specific phospholipase C enzymes[J]. Chemical Reviews, 2018,118(18):8435-8473.
doi: 10.1021/acs.chemrev.8b00208 pmid: 30148347 |
[9] |
Suh PG, Park JI, Manzoli L, et al. Multiple roles of phosphoinositide-specific phospholipase C isozymes[J]. BMB Reports, 2008,41(6):415-434.
doi: 10.5483/BMBRep.2008.41.6.415 URL |
[10] |
Hong Y, Zhao J, Guo L, et al. Plant phospholipases D and C and their diverse functions in stress responses[J]. Progress in Lipid Research, 2016,62:55-74.
doi: 10.1016/j.plipres.2016.01.002 URL |
[11] |
Meijer HJG, Munnik T. Phospholipid-based signaling in plants[J]. Annual Review of Plant Biology, 2003,54(1):265-306.
doi: 10.1146/annurev.arplant.54.031902.134748 URL |
[12] |
Melin PM, Sommarin M, Sandelius AS, et al. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes[J]. FEBS Letters, 1987,223(1):87-91.
doi: 10.1016/0014-5793(87)80515-X URL |
[13] | Rupwate SD, Rajasekharan R. Plant phosphoinositide-specific phospholipase C[J]. Plant Signaling & Behavior, 2012,7(10):1281-1283. |
[14] |
Nakamura Y, Awai K, Masuda T, et al. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis[J]. Journal of Biological Chemistry, 2005,280(9):7469-7476.
doi: 10.1074/jbc.M408799200 URL |
[15] | Peters C, Kim SC, Devaiah S, et al. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis[J]. Plant Cell & Environment, 2014,37(9):2002-2013. |
[16] |
Tasma IM, Brendel V, Whitham SA, et al. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2008,46(7):627-637.
doi: 10.1016/j.plaphy.2008.04.015 pmid: 18534862 |
[17] |
Boss WF, Im YJ. Phosphoinositide signaling[J]. Annual Review of Plant Biology, 2012,63(1):409-429.
doi: 10.1146/annurev-arplant-042110-103840 URL |
[18] | 张杰伟, 丁莉萍, 陈亚娟, 等. 杨树磷酸肌醇特异性磷脂酶 C 基因家族鉴定与分析[J]. 福建农业学报, 2016,31(11):1181-1186. |
Zhang JW, Ding LP, Chen YJ, et al. Genome-wide analysis and identification of phosphoinositide-specific phospholipase C gene family in Poplar(Populus trichocarpa)[J]. FuJian Journal of Agricultural Sciences, 2016,31(11):1181-1186. | |
[19] |
Wang XG, Liu Y, Li Z, et al. Genome-wide identification and expression profile analysis of the phospholipase C gene family in wheat(Triticum aestivum L.)[J]. Plants, 2020,9(7):885.
doi: 10.3390/plants9070885 URL |
[20] | Wang XM. Phospholipases in plant signaling[M]. Springer-Verlag Berlin Heidelberg, 2014. |
[21] |
Cai J, Guo S, Lomasney JW, et al. Ca2+-independent binding of anionic phospholipids by phospholipase C δ1 EF-hand domain[J]. Journal of Biological Chemistry, 2013,288(52):37277-37288.
doi: 10.1074/jbc.M113.512186 URL |
[22] | Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH Oxidase RBOHD during plant immunity[J]. Plant & Cell Physiology, 2015(8):8. |
[23] | Swann K, Saunders CM, Rogers NT, et al. PLCzeta(zeta):a sperm protein that triggers Ca2+ oscillations and egg activation in mammals[J]. Seminars in Cell & Developmental Biology, 2006,17(2):264-273. |
[24] |
Lyon AM, Dutta S, Boguth CA, et al. Full-length Gαq-phospholipase C-β3 structure reveals interfaces of the C-terminal coiled-coil domain[J]. Nature Structural & Molecular Biology, 2013,20(3):355-362.
doi: 10.1038/nsmb.2497 URL |
[25] |
Sutton RB, Sprang SR. Structure of the protein kinase C beta phospholipid-binding C2 domain complexed with Ca2+[J]. Structure, 1998,6(11):1395-1405.
pmid: 9817842 |
[26] |
Baluch DP, Koeneman BA, Hatch KR, et al. PKC isotypes in post-activated and fertilized mouse eggs:association with the meiotic spindle[J]. Developmental Biology, 2004,274(1):45-55.
doi: 10.1016/j.ydbio.2004.05.030 URL |
[27] | 贾哓玮, 贾羊羊, 司旭阳, 等. 植物PLC-DGK/PA途径介导的渗透胁迫应答反应[J]. 中国细胞生物学学报, 2018,40(9):1564-1572. |
Jia XW, Jia YY, Si XY, et al. Plant PLC-DGK/PA pathway mediated osmotic stress response[J]. Chinese Journal of Cell Biology, 2018,40(9):1564-1572. | |
[28] |
Ruelland E, Cantrel C, Gawer M, et al. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells[J]. Plant Physiology, 2002,130(2):999-1007.
doi: 10.1104/pp.006080 URL |
[29] |
Munnik T. Phosphatidic acid:an emerging plant lipid second messenger[J]. Trends in Plant Science, 2001,6(5):227-233.
doi: 10.1016/S1360-1385(01)01918-5 URL |
[30] |
Im YJ, Perera IY, Brglez I, et al. Increasing plasma membrane phosphatidylinositol(4, 5)bisphosphate biosynjournal increases phosphoinositide metabolism in Nicotiana tabacum[J]. The Plant Cell, 2007,19(5):1603-1616.
doi: 10.1105/tpc.107.051367 URL |
[31] |
Dewald DB, Torabinejad J, Jones CA, et al. Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis[J]. Plant Physiology, 2001,126(2):759-769.
doi: 10.1104/pp.126.2.759 URL |
[32] |
Mosblech A, Koenig S, Stenzel I, et al. Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding[J]. Molecular Plant, 2008,1(2):249-261.
doi: 10.1093/mp/ssm028 pmid: 19825537 |
[33] |
Deng X, Yuan S, Cao H, et al. Phosphatidylinositol-hydrolyzingphospholipase C4 modulates rice response to salt and drought[J]. Plant Cell and Environment, 2019,42(2):536-548.
doi: 10.1111/pce.v42.2 URL |
[34] |
Li L, Wang F, Yan P, et al. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice[J]. New Phytologist, 2017,214(3):1172-1187.
doi: 10.1111/nph.2017.214.issue-3 URL |
[35] | Munnik T, Vermeer JEM. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants[J]. Plant Cell & Environment, 2010,33(4):655-669. |
[36] |
Elodie PMG, Leprince AS, Thiery L, et al. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis[J]. Plant Physiology, 2007,144(1):503-512.
doi: 10.1104/pp.106.095281 URL |
[37] | Savouré A. Phospholipases C and D modulate proline accumulation in thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress[J]. Plant & Cell Physiology, 2012,53(1):183-192. |
[38] |
Fujita Y, Fujita M, Shinozaki K, et al. ABA-mediated transcriptional regulation in response to osmotic stress in plants[J]. Journal of Plant Research, 2011,124(4):509-525.
doi: 10.1007/s10265-011-0412-3 URL |
[39] |
Xiong LM, Lee BH, Ishitani M, et al. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis[J]. Genes & Development, 2001,15(15):1971-1984.
doi: 10.1101/gad.891901 URL |
[40] |
Chua SNH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals[J]. The Plant Cell, 2001,13(5):1143-1154.
doi: 10.1105/tpc.13.5.1143 URL |
[41] |
Kyinke O, Flemr M, Vergnolle C, et al. Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions[J]. Plant Physiology, 2009,150(1):424-436.
doi: 10.1104/pp.108.133595 URL |
[42] |
Wang X, Devaiah SP, Zhang W, et al. Signaling functions of phosphatidic acid[J]. Progress in Lipid Research, 2006,45(3):250-278.
doi: 10.1016/j.plipres.2006.01.005 URL |
[43] |
Shin JJH, Loewen CJR. Putting the pH into phosphatidic acid signaling[J]. BMC Biology, 2011,9:85.
doi: 10.1186/1741-7007-9-85 URL |
[44] |
Peng X, Frohman MA. Mammalian phospholipase D physiological and pathological roles[J]. Acta Physiologica, 2012,204(2):219-226.
doi: 10.1111/apha.2011.204.issue-2 URL |
[45] | Zhang W, Qin C, Zhao J, et al. Phospholipase Dα1 -derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(25):9508-9513. |
[46] |
Liang G, Mishra G, Markham JE, et al. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis[J]. Journal of Biological Chemistry, 2012,287(11):8286-8296.
doi: 10.1074/jbc.M111.274274 pmid: 22275366 |
[47] |
Welti R. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-inducde lipid chances in Arabidopsis[J]. Journal of Biological Chemistry, 2002,277(35):31994-32002.
doi: 10.1074/jbc.M205375200 URL |
[48] | 徐小静, 曹志翔, 刘国琴, 等. 拟南芥磷酸肌醇特异性磷脂酶AtPLC6基因的克隆与表达[J]. 科学通报, 2004,49(4):363-369. |
Xu XJ, Cao ZX, Liu GQ, et al. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana[J]. Chinese Science Bulletin, 2004,49(4):363-369.
doi: 10.1007/BF02900319 URL |
|
[49] | 董洁静, 徐晶宇, 林俊俊, 等. 玉米PLCs基因家族鉴定及表达谱分析[J]. 植物生理学报, 2018,54(6):1018-1028. |
Dong JJ, Xu JY, Lin JJ, et al. Genome-wide identification and expression analysis of PLCs gene family in maize(Zea mays)[J]. Plant Physiology Journal, 2018,54(6):1018-1028. | |
[50] | Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, et al. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration[J]. Plant & Cell Physiology, 2000,41(7):898-903. |
[51] |
Takáč T, Novák D, Šamaj J. Recent advances in the cellular and developmental biology of phospholipases in plants[J]. Frontiers in Plant Science, 2019,10:362.
doi: 10.3389/fpls.2019.00362 URL |
[52] |
Zhang K, Jin C, Wu L, et al. Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat(Triticum aestivum L.)[J]. PLoS One, 2014,9(8):e105061.
doi: 10.1371/journal.pone.0105061 URL |
[53] |
Yun JK, Kim JE, Lee JH, et al. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.)[J]. FEBS Letters, 2004,556(1/3):127-136.
doi: 10.1016/S0014-5793(03)01388-7 URL |
[54] |
Kopka J. Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato[J]. Plant Physiology, 1998,116(1):239-250.
doi: 10.1104/pp.116.1.239 URL |
[55] | Lemtiri-Chlieh F, Macrobbie EC, Webb AR, et al. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(17):10091-10095. |
[56] |
Kanehara K, Yu CY, Cho Y, et al. Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response[J]. PLoS Genetics, 2015,11(9):e1005511.
doi: 10.1371/journal.pgen.1005511 URL |
[57] | Ren H, Gao K, Liu Y, et al. The role of AtPLC3 and AtPLC9 in thermotolerance in Arabidopsis[J]. Plant Signaling & Behavior, 2017,12(10):e1162368. |
[58] |
Liu HT, Liu YY, Pan QH, et al. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves[J]. Journal of Experimental Botany, 2006,57(12):3337-3347.
doi: 10.1093/jxb/erl098 URL |
[59] |
Zheng SZ, Liu YL, Li B, et al. Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis[J]. The Plant Journal, 2012,69(4):689-700.
doi: 10.1111/tpj.2012.69.issue-4 URL |
[60] | Gao K, Liu YL, Li B, et al. Phosphoinositide-specific phospholipase C isoform 3(AtPLC3)and AtPLC9 function additionally to each other in thermotolerance in Arabidopsis thaliana[J]. Plant & Cell Physiology, 2014,55(11):1873-1883. |
[61] | 姚晓露, 杨明明, 高翔, 等. 小麦TaPLC1基因与耐热的相关性研究[J]. 麦类作物学报, 2018,38(5):535-541. |
Yao XL, Yang MM, Gao X, et al. Study on the relationship between TaPLC1 gene and heat tolerance in wheat[J]. Journal of Triticeae Crops, 2018,38(5):535-541. | |
[62] | Reggiani R, Laoreti P. Evidence for the involvement of phospholipase C in the anaerobic signal transduction[J]. Plant & Cell Physiology, 2000,41(12):1392-1396. |
[63] | Martínez-Estévez M, Palma GRD, Muñoz-Sánchez JA, et al. Aluminium differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells[J]. Journal of Plant Physiology, 2003,106(97):1297-1303. |
[64] | González A, Cabrera MDLA, Mellado M, et al. Copper-induced intracellular calcium release requires extracellular calcium entry and activation of L-type voltage-dependent calcium channels in Ulva compressa[J]. Plant Signaling & Behavior, 2012,7(7):728-732. |
[65] | Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling[J]. Plant Signaling & Behavior, 2011,6(1):13-18. |
[66] |
Antolin-Llovera M, Petutsching EK, Ried MK, et al. Knowing your friends and foes-plant receptor-like kinases as initiators of symbiosis or defence[J]. New Phytologist, 2014,204(4):791-802.
doi: 10.1111/nph.2014.204.issue-4 URL |
[67] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006,444(7117):323-329.
doi: 10.1038/nature05286 URL |
[68] |
Gonorazky G, Guzzo MC, Laxalt AM. Silencing of the tomato phosphatidylinositol-phospholipase C2(SlPLC2)reduces plant susceptibility to Botrytis cinerea[J]. Molecular Plant Pathology, 2016,17(9):1354-1363.
doi: 10.1111/mpp.12365 pmid: 26868615 |
[69] |
Gonorazky G, Ramirez L, Abd-El-Haliem A, et al. The tomato phosphatidylinositol-phospholipase C2(SlPLC2)is required for defense gene induction by the fungal elicitor xylanase[J]. Journal of Plant Physiology, 2014,171(11):959-965.
doi: 10.1016/j.jplph.2014.02.008 pmid: 24913053 |
[70] |
Pokotylo I, Pejchar P, Potocky M, et al. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling[J]. Progress in Lipid Research, 2013,52(1):62-79.
doi: 10.1016/j.plipres.2012.09.001 pmid: 23089468 |
[71] |
Peters C, Li M, Narasimhan R, et al. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis[J]. The Plant Cell, 2010,22(8):2642-2659.
doi: 10.1105/tpc.109.071720 URL |
[72] | Davletov B, Ashton A, Meunier F, et al. Alpha-Latrotoxin stimulates vesicle exocytosis via latrophilin- and PLC-mediated coupling of external and stored Ca-2 and induces Ca2+-independent membrane pores [J]. European J Neuroscience, 1998,17(3):648-657. |
[73] |
Macfarlane MG, Knight BCJG. The biochemistry of bacterial toxins:The lecithinase activity of Cl. welchii toxins[J]. Biochemical Journal, 1941,35(8/9):884-902.
doi: 10.1042/bj0350884 URL |
[74] |
Poussin MA, Leitges M, Goldfine H. The ability of Listeria monocytogenes PI-PLC to facilitate escape from the macrophage phagosome is dependent on host PKCbeta[J]. Microbial Pathogenesis, 2009,46(1):1-5.
doi: 10.1016/j.micpath.2008.09.008 URL |
[75] | Scherer GFE, Paul RU, Holk A, et al. Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells[J]. Biochemical & Biophysical Research Communications, 2002,293(2):766-770. |
[76] |
Gaude N, Nakamura Y, Scheible WR, et al. Phospholipase C5(NPC5)is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis[J]. The Plant Journal, 2010,56(1):28-39.
doi: 10.1111/tpj.2008.56.issue-1 URL |
[77] |
Ngo AH, Lin YC, Liu YC, et al. A pair of nonspecific phospholipases C, NPC2 and NPC6, are involved in gametophyte development and glycerolipid metabolism in Arabidopsis[J]. New Phytologist, 2018,219(1):163-175.
doi: 10.1111/nph.2018.219.issue-1 URL |
[78] | Nakamura Y, Gaude N, Awai K, et al. Two isozymes of a novel non-specific phospholipase C family, NPC4 and NPC5, differentially play roles during phosphate starvation in Arabidopsis[J]. Plant & Cell Physiology, 2006. |
[79] | Reddy VS, Rao DKV, Rajasekharan R. Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana[J]. Biochimica et Biophysica Acta, 2010,1801(4):455-461. |
[80] |
Cao H, Zhuo L, Su Y, et al. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice[J]. The Plant Journal, 2016,86(4):308-321.
doi: 10.1111/tpj.13165 URL |
[81] |
Cai G, Fan C, Liu S, et al. Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants[J]. New Phytologist, 2020,226(4):1055-1073.
doi: 10.1111/nph.v226.4 URL |
[82] |
Calderon-Villalobos IA, Kuhnle C, Li H, et al. Luc trap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo[J]. Plant Physiology, 2006,141(1):3-14.
doi: 10.1104/pp.106.078097 URL |
[83] |
Nakamura Y, Ngo AH. Non-specific phospholipase C(NPC):an emerging class of phospholipase C in plant growth and development[J]. Journal of Plant Research, 2020,133(4):489-497.
doi: 10.1007/s10265-020-01199-8 pmid: 32372398 |
[84] |
Kocourková D, Krčková Z, Pejchar P, et al. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress[J]. Journal of Experimental Botany, 2011,62(11):3753-3763.
doi: 10.1093/jxb/err039 pmid: 21525137 |
[85] |
Su Y, Li MY, Guo L, Wang XM. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency[J]. The Plant Journal, 2018,94(2):315-326.
doi: 10.1111/tpj.2018.94.issue-2 URL |
[86] | Peters C, Kim SC, Devaiah S, et al. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis[J]. Plant, Cell & Environment, 2014,37(9):2002-2013. |
[87] |
Charng YY, Liu HC, Liu NY, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 2007,143(1):251-262.
doi: 10.1104/pp.106.091322 URL |
[88] |
Krčková Z, Brouzdová J, Daněk M, et al. Arabidopsis non-specific phospholipase C1:characterization and its involvement in response to heat stress[J]. Frontiers in Plant Science, 2015,6:928.
doi: 10.3389/fpls.2015.00928 pmid: 26581502 |
[89] | Zhang Q, Ringo VW, Xavier Z, et al. Knock-down of Arabidopsis PLC5 reduces primary root growth and secondary root formation while overexpression improves drought tolerance and causes stunted root hair growth[J]. Plant & Cell Physiology, 2018,59(10):2004-2019. |
[90] | Sivaguru M, Pike S, Gassmann W, et al. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane:evidence that these responses are mediated by a glutamate receptor[J]. Plant & Cell Physiology, 2003,44:667-675. |
[91] | Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants[J]. International Review of Cytology, 2000,200:1-46. |
[92] |
Pejchar P, Potocký M, Novotná Z, et al. Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells[J]. New Phytologist, 2010,188(1):150-160.
doi: 10.1111/j.1469-8137.2010.03349.x URL |
[93] |
Pejchar P, Pleskot R, Schwarzerova K, et al. Aluminum ions inhibit phospholipase D in a microtubule-dependent manner[J]. Cell Biology International, 2008,32(5):554-556.
doi: 10.1016/j.cellbi.2007.11.008 URL |
[94] |
Tjellstrom H, Hellgren LI, Wieslander A, et al. Lipid asymmetry in plant plasma membranes:phosphate deficiency-Induced phospholipid replacement is restricted to the cytosolic leaflet[J]. The FASEB Journal, 2010,24(4):1128-1138.
doi: 10.1096/fsb2.v24.4 URL |
[95] | Yu B, Xu CC, Benning C. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(8):5732-5737. |
[96] |
Jouhet J, Maréchal E, Bligny R, et al. Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation[J]. FEBS Letters, 2003,544(1/3):63-68.
doi: 10.1016/S0014-5793(03)00477-0 URL |
[97] | Misson J, Raghothama KG, Jain A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:11934-11939. |
[98] |
Nakamura Y, Koizumi R, Shui G, et al. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106:20978-20983.
doi: 10.1073/pnas.0907173106 pmid: 19923426 |
[99] |
Wimalasekera R, Pejchar P, Holk A, et al. Plant phosphatidylcholine-hydrolyzing Phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thali-ana[J]. Molecular Plant, 2010,3(3):610-625.
doi: 10.1093/mp/ssq005 pmid: 20507939 |
[100] | Canonne J, Froidure-Nicolas S, Rivas S. Phospholipases in action during plant defense signaling[J]. Plant Signaling & Behavior, 2014,6(1):13-18. |
[1] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[2] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[3] | WANG Ying, CHEN Yong-jing, SUN Qing-ye, YANG Meng-yao, WU Dun. Physiological and Biochemical Characteristics of Inquilinus sp. P6-4 Strain and Its Degradation Characteristics for Naphthalene [J]. Biotechnology Bulletin, 2021, 37(6): 117-126. |
[4] | LIN Mei-xuan, ZHOU Xiao-man, GUAN Feng, CUI Wen-jing. Heterologous Expression and Application of Phosphatidylinositol-specific Phospholipase C [J]. Biotechnology Bulletin, 2020, 36(1): 81-87. |
[5] | LI Chun, SUN Chun-yu, CHEN Jing, LIN Yan-ping, WANG Yi, ZHANG Mei-ping. Research Advances in the Major Facilitator Superfamily [J]. Biotechnology Bulletin, 2018, 34(8): 43-49. |
[6] | LI Yang-yang, JIAO Zhen. Effects of Exogenous Methyl Jasmonate on the Tolerance of Wheat Seedlings to Low Temperature [J]. Biotechnology Bulletin, 2018, 34(3): 87-92. |
[7] | LI Lu-lu, QU Chang-feng, ZHENG Zhou, WANG Yi-bin, MIAO Jin-lai, ZHANG Li. Study Advances on the Algal Aquaporins [J]. Biotechnology Bulletin, 2017, 33(8): 1-6. |
[8] | HUA Xiao-yu, TAO Shuang, SUN Sheng-nan, GUO Na, YAN Xiu-feng, LIN Ji-xiang. Research Progress on Phenolic Compounds of Plant Secondary Metabolites [J]. Biotechnology Bulletin, 2017, 33(12): 22-29. |
[9] | LIU Yan, MENG Zhi-gang, SUN Guo-qing, WANG Yuan, ZHOU Tao, GUO San-dui, ZHANG Rui. Cloning and Function Analysis of Gene GhPYR1 in Gossypium hirsutum L. [J]. Biotechnology Bulletin, 2016, 32(2): 90-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||