Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 253-262.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1302
Previous Articles Next Articles
WANG Jian-yong1,2(), ZOU Yong-mei3, GE Yan-bin4, WANG Kai2(), XI Meng-li1()
Received:
2020-10-21
Online:
2021-08-26
Published:
2021-09-10
Contact:
WANG Kai,XI Meng-li
E-mail:1207347302@qq.com;kaiwang92@sina.com;ximenglinjfu@126.com
WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction[J]. Biotechnology Bulletin, 2021, 37(8): 253-262.
[1] |
Birnbaum KD, Roudier F. Epigenetic memory and cell fate reprogramming in plants[J]. Regeneration, 2017, 4(1):15-20.
doi: 10.1002/reg2.73 pmid: 28316791 |
[2] |
Ikeuchi M, Sugimoto K, Iwase A. Plant callus:mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9):3159-3173.
doi: 10.1105/tpc.113.116053 URL |
[3] |
Krizova K, Fojtova M, Depicker A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiology, 2009, 149(3):1493-1504.
doi: 10.1104/pp.108.133165 URL |
[4] |
de la Paz Sanchez M, Aceves-Garcia P, Petrone E, et al. The impact of Polycomb group(PcG)and Trithorax group(TrxG)epigenetic factors in plant plasticity[J]. New Phytologist, 2015, 208(3):684-694.
doi: 10.1111/nph.13486 pmid: 26037337 |
[5] |
Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. Journal of Experimental Botany, 2011, 62(11):3713-3725.
doi: 10.1093/jxb/err155 pmid: 21617249 |
[6] | Lee K, Park OS, Seo PJ. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation[J]. Science Signaling, 2017, 10(507):1-10. |
[7] |
Lee K, Park OS, Jung SJ, et al. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis[J]. Journal of Plant Physiology, 2016, 191:95-100.
doi: 10.1016/j.jplph.2015.12.006 URL |
[8] |
Lee K, Park OS, Seo PJ. RNA-seq analysis of the Arabidopsis transcriptome in pluripotent calli[J]. Molecules and Cells, 2016, 39(6):484-494.
doi: 10.14348/molcells.2016.0049 URL |
[9] | Du X, Fang T, Liu Y, et al. Global profiling of N6-methyladenosine methylation in maize callus induction[J]. The Plant Genome, 2020, 13(2):e20018. |
[10] | Kim JY, Yang W, Forner J, et al. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis[J]. EMBO Journal, 2018, 37(20):98726. |
[11] |
Bottley A, Chapman NH, Koebner RMD. Homoeologous gene silencing in tissue cultured wheat callus[J]. BMC Genetics, 2008, 9:65.
doi: 10.1186/1471-2156-9-65 pmid: 18928533 |
[12] |
Zakrzewski F, Schmidt M, Van Lijsebettens M, et al. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet(Beta vulgaris L.)[J]. Plant Journal, 2017, 90(6):1156-1175.
doi: 10.1111/tpj.2017.90.issue-6 URL |
[13] | Kapazoglou A, Ganopoulos I, Tani E, et al. Epigenetics, Epigenomics and crop improvement[M]// Kuntz M. Transgenic Plants and Beyond. Lodon: Academic Press, 2018:287-324. |
[14] |
Xu J, Wang X, Cao H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J]. DNA Research, 2017, 24(5):509-522.
doi: 10.1093/dnares/dsx021 URL |
[15] |
Niederhuth CE, Schmitz RJ. Putting DNA methylation in context:from genomes to gene expression in plants[J]. Biochim Biophys Acta-Gene Regul Mech, 2017, 1860(1):149-156.
doi: 10.1016/j.bbagrm.2016.08.009 URL |
[16] |
Li J, Wang M, Li Y, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnology Journal, 2019, 17(2):435-450.
doi: 10.1111/pbi.2019.17.issue-2 URL |
[17] |
Movahedi A, Zhang J, Sun W, et al. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress[J]. Plant Physiology and Biochemistry, 2018, 127:64-73.
doi: S0981-9428(18)30126-8 pmid: 29549759 |
[18] |
Stroud H, Ding B, Simon SA, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. eLife, 2013, 2:e00354.
doi: 10.7554/eLife.00354 URL |
[19] |
Gao Y, Ran L, Kong Y, et al. Assessment of DNA methylation changes in tissue culture of Brassica napus[J]. Russian Journal of Genetics, 2014, 50(11):1186-1191.
doi: 10.1134/S1022795414100032 URL |
[20] |
Berdasco M, Alcazar R, Victoria Garcia-Ortiz M, et al. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells[J]. PLoS One, 2008, 3(10):e3306.
doi: 10.1371/journal.pone.0003306 URL |
[21] |
Li W, Liu H, Cheng ZJ, et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genetics, 2011, 7(8):e1002243.
doi: 10.1371/journal.pgen.1002243 URL |
[22] |
Stelpflug SC, Eichten SR, Hermanson PJ, et al. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize[J]. Genetics, 2014, 198(1):209-218.
doi: 10.1534/genetics.114.165480 pmid: 25023398 |
[23] | Gozukirmizi N. Analysis of retrotransposition and DNA methylation in barley callus culture[J]. Acta Biol Hung, 2013, 64(1):90-99. |
[24] |
Foerderer A, Zhou Y, Turck F. The age of multiplexity:recruitment and interactions of Polycomb complexes in plants[J]. Current Opinion in Plant Biology, 2016, 29:169-178.
doi: 10.1016/j.pbi.2015.11.010 URL |
[25] |
Jiang H, Kohler C. Evolution, function, and regulation of genomic imprinting in plant seed development[J]. Journal of Experimental Botany, 2012, 63(13):4713-4722.
doi: 10.1093/jxb/ers145 pmid: 22922638 |
[26] |
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control[J]. Nature Reviews Genetics, 2016, 17(8):487-500.
doi: 10.1038/nrg.2016.59 URL |
[27] | Jiang F, Feng Z, Liu H, et al. Involvement of plant stem cells or stem cell-like cells in dedifferentiation[J]. Frontiers in Plant Science, 2015, 6:1028. |
[28] |
Desvoyes B, Sanchez MP, Ramirez-Parra E, et al. Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development[J]. Heredity, 2010, 105(1):80-91.
doi: 10.1038/hdy.2010.50 pmid: 20424644 |
[29] |
Engelhorn J, Blanvillain R, Carles CC. Gene activation and cell fate control in plants:a chromatin perspective[J]. Cellular and Molecular Life Sciences, 2014, 71(16):3119-3137.
doi: 10.1007/s00018-014-1609-0 pmid: 24714879 |
[30] |
Lee K, Seo PJ. Dynamic epigenetic changes during plant regeneration[J]Trends Plant Sci, 2018, 23(3):235-247.
doi: 10.1016/j.tplants.2017.11.009 URL |
[31] |
Xu K, Liu J, Fan M, et al. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs[J]. Genomics, 2012, 100(2):116-124.
doi: 10.1016/j.ygeno.2012.05.013 URL |
[32] | Furuta K, Kubo M, Sano K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli[J]. Plant Cell Physiol, 2011, 4:618-628. |
[33] | Zhang H, Guo F, Qi P, et al. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo[J]. Plant Cell Physiol, 2020, 9:1646-1660. |
[34] |
Fehér A. Callus, dedifferentiation, totipotency, somatic embryogenesis:what these terms mean in the era of molecular plant biology?[J]. Frontiers Plant Sci, 2019, 10:536.
doi: 10.3389/fpls.2019.00536 URL |
[35] |
Lee K, Park OS, Seo PJ. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. Plant J, 2018, 95(6):961-975.
doi: 10.1111/tpj.2018.95.issue-6 URL |
[36] |
Ishihara H, Sugimoto K, Tarr PT, et al. Primed histone demethylation regulates shoot regenerative competency[J]. Nature Communications, 2019, 10(1):1786.
doi: 10.1038/s41467-019-09386-5 pmid: 30992430 |
[37] |
Shippen DE, McKnight TD. Telomeres, telomerase and plant development[J]. Trends Plant Sci, 1998, 3(4):126-130.
doi: 10.1016/S1360-1385(98)01214-X URL |
[38] |
Grafi G, Ben-Meir H, Avivi Y, et al. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation[J]. Dev Biol, 2007, 306(2):838-846.
doi: 10.1016/j.ydbio.2007.03.023 URL |
[39] |
Sovakova PP, Magdolenova A, Konecna K, et al. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis[J]. Plant Molecular Biology, 2018, 98(1-2):81-99.
doi: 10.1007/s11103-018-0765-2 URL |
[40] |
Gallego ME, White CI. RAD50 function is essential for telomere maintenance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2001, 98(4):1711-1716.
doi: 10.1073/pnas.98.4.1711 URL |
[41] | Fajkus J, Fulneckova J, Hulanova M, et al. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths[J]. Molecular & General Genetics, 1998, 260(5):470-474. |
[42] |
Liu Z, Li J, Wang L, et al. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana[J]. Plant Journal, 2016, 87(4):391-402.
doi: 10.1111/tpj.2016.87.issue-4 URL |
[43] |
Movahedi A, Zhang J, Sun W, et al. Plant small RNAs:definition, classification and response against stresses[J]. Biologia, 2018, 73(3):285-294.
doi: 10.2478/s11756-018-0034-5 URL |
[44] |
Chen CJ, Liu Q, Zhang YC, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus[J]. Rna Biology, 2011, 8(3):538-547.
doi: 10.4161/rna.8.3.15199 URL |
[45] |
Liu H, Ma L, Yang X, et al. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation[J]. BMC Plant Biology, 2017, 17:105.
doi: 10.1186/s12870-017-1055-x URL |
[46] | Qiao M, Xiang F. A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro[J]. Plant Signaling & Behavior, 2013, 8(3):e23479. |
[47] |
Zhang TQ, Lian H, Tang H, et al. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants[J]. Plant Cell, 2015, 27(2):349-360.
doi: 10.1105/tpc.114.135186 URL |
[48] |
He C, Chen X, Huang H, et al. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues[J]. PLoS Genetics, 2012, 8(8):e1002911.
doi: 10.1371/journal.pgen.1002911 URL |
[49] |
Williams L, Zhao J, Morozova N, et al. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes[J]. Dev Dyn, 2003, 228(1):113-120.
doi: 10.1002/(ISSN)1097-0177 URL |
[50] |
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic regulation of auxin-induced somatic embryogenesis in plants[J]. International Journal of Molecular Sciences, 2020, 21(7):2307.
doi: 10.3390/ijms21072307 URL |
[51] |
Eichten SR, Swanson-Wagner RA, Schnable JC, et al. Heritable epigenetic variation among maize inbreds[J]. PLoS Genetics, 2011, 7(11):e1002372.
doi: 10.1371/journal.pgen.1002372 URL |
[52] |
Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6):1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[53] |
Us-Camas R, Rivera-Solis G, Duarte-Ake F, et al. In vitro culture:an epigenetic challenge for plants[J]. Plant Cell Tissue and Organ Culture, 2014, 118(2):187-201.
doi: 10.1007/s11240-014-0482-8 URL |
[54] |
Gernand D, Golczyk H, Rutten T, et al. Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum[J]. Genome, 2007, 50(5):435-442.
pmid: 17612612 |
[55] |
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010, 11(3):204-220.
doi: 10.1038/nrg2719 URL |
[56] | Zhang N, Laux T. Epigenetically jump starting de novo shoot regeneration[J]. EMBO Journal, 2018, 37(20):e100596. |
[57] |
Baucom RS, Estill JC, Chaparro C, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome[J]. PLoS Genetics, 2009, 5(11):e1000732.
doi: 10.1371/journal.pgen.1000732 URL |
[58] |
Wang W, Zheng H, Fan C, et al. High rate of chimeric gene origination by retroposition in plant genomes[J]. Plant Cell, 2006, 18(8):1791-1802.
pmid: 16829590 |
[59] |
Lanciano S, Carpentier MC, Llauro C, et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants[J]. PLoS Genetics, 2017, 13(2):e1006630.
doi: 10.1371/journal.pgen.1006630 URL |
[60] |
Saze H, Tsugane K, Kanno T, et al. DNA Methylation in plants:relationship to small RNAs and histone modifications, and functions in transposon inactivation[J]. Plant and Cell Physiology, 2012, 53(5):766-784.
doi: 10.1093/pcp/pcs008 URL |
[61] |
Grafi G. How cells dedifferentiate:a lesson from plants[J]. Developmental Biology, 2004, 268(1):1-6.
doi: 10.1016/j.ydbio.2003.12.027 URL |
[1] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[2] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[3] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[4] | ZHANG Miao, YANG Lu-lu, JIA Yan-long, WANG Tian-yun. Research Progress in the Roles of DNA and Histone Methylations in Epigenetic Regulation [J]. Biotechnology Bulletin, 2022, 38(7): 23-30. |
[5] | WANG Chen-chen, ZHANG Fan-li, CHEN Pei-qi, WENG Si-yao, WANG Hui-fang, CUI Xiao-juan. Research Progress in the Structural and Functional Analysis of Mammalian DNA Methyltransferase DNMT1 and DNMT3 [J]. Biotechnology Bulletin, 2022, 38(7): 31-39. |
[6] | CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing [J]. Biotechnology Bulletin, 2022, 38(7): 40-50. |
[7] | PIAO Jun, ZHANG Lu-Jie, PIAO Jing-Ai, ZHOU Yi-Jun, LI Shuo. Discovery of Viruses from Small Brown Planthopper by Small RNA Deep Sequencing [J]. Biotechnology Bulletin, 2022, 38(2): 281-288. |
[8] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[9] | ZHAO Lin, WANG Pu, WU Qi, SONG Rui-rui, LAN Tao, YUN Zhen-yu. Research Progress in Histone Modification of Plant Involved in the Regulation of Gene Expression Response to Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(7): 182-189. |
[10] | LIU Zhi-min, YANG Zhi-yi, JI Feng-dan, MEI Zhi-chao, YU Jia-hui, XIE Li-nan. Research Progress of Plant DNA Methylation Under Abiotic Stress [J]. Biotechnology Bulletin, 2020, 36(11): 122-132. |
[11] | JIANG Rui, LÜ Ke-nao, PAN Xue-feng, CUI Xin-xia, SHEN Shi-gang, DING Liang. Current Status and Challenges of Epigenetic Drug Research and Development [J]. Biotechnology Bulletin, 2019, 35(8): 213-225. |
[12] | XUE Jing-jing, CHEN Song-bi. Variation Analysis of DNA Methylation in Different Development Stages of Cassava [J]. Biotechnology Bulletin, 2018, 34(5): 117-123. |
[13] | ZHANG Ya-fang, HE Gang, RONG Guang-tian, LIU Xian-gui, NI Shang-ge, ZHANG Shi-liang. Changes of Endogenous Hormones During the Culture of Callus from Sopatholobus suberechtus [J]. Biotechnology Bulletin, 2017, 33(3): 66-70. |
[14] | AO Xu-dong SA Ru-la WANG Jie WANG Hui-min YU Hai-quan. Expression of AID and Dynamic Changes of Its DNA Methylation in Regulation Region During Bovine Early Embryonic Development [J]. Biotechnology Bulletin, 2016, 32(7): 242-249. |
[15] | YANG Ya-lan, GUO Zhi-yun, DING Ruo-fan, MAO Can-quan, GUO Jian-xiu, XIONG Li-li. Differential Expression Profile Analysis of MicroRNAs in Doxorubicin-induced Hepatoma Cell Line HepG2 [J]. Biotechnology Bulletin, 2016, 32(6): 244-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||