Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (8): 243-252.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0057
Previous Articles Next Articles
LI Qian1,2(), JIANG Wen-bo1, WANG Yu-xiang2, ZHANG Bo2(), PANG Yong-zhen1()
Received:
2021-01-14
Online:
2021-08-26
Published:
2021-09-10
Contact:
ZHANG Bo,PANG Yong-zhen
E-mail:540794898@qq.com;xjauzb@126.com;pangyongzhen@caas.cn
LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level[J]. Biotechnology Bulletin, 2021, 37(8): 243-252.
序号 No. | 基因 Genes | 基因来源 Gene sources | 转基因物种 Genetically modified species | 功能 Functions | 参考文献 Reference |
---|---|---|---|---|---|
1 | MsNAC2 | 紫花苜蓿(Medicago sativa) | 烟草(Nicotiana tabacum) | 丙二醛含量降低,脯氨酸含量、 SOD 和 POD 的活性提高 Reduce MDA content,increase proline content,SOD and POD activity | [ |
2 | MfNAC35 | 黄花苜蓿(Medicago falcata) | 烟草(N. tabacum) | 抗逆相关基因 CAT、SOD、P5CS表达的上调 Up-regulation of stress-resistance related genes CAT,SOD,and P5CS | [ |
3 | MfNACsa | 黄花苜蓿(M. falcata) | 蒺藜苜蓿 (Medicago truncatula) | MfNACsa在脱水胁迫下直接结合Glyl启动子并激活其转录 MfNACsa directly binds to the Glyl promoter and activates its transcription under dehydration stress | [ |
4 | MsMYB2L | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 脯氨酸、可溶性糖增加,降低了脂质过氧化 Increase proline and soluble sugars and reduce lipid peroxidation | [ |
5 | MfERF049 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF049在根中的表达 Drought stress induces the expression of MfERF049 in roots | [ |
6 | MfERF026 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF026在根、茎和叶均表达 Drought stress induces the expression of MfERF026 in roots,stems and leaves | [ |
7 | MfERF086 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF086在根、茎和叶均表达 Drought stress induces the expression of MfERF086 in roots,stems and leaves | [ |
8 | MsERF11 | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 干旱胁迫诱导MsERF11表达 Drought stress induces the expression of MsERF11 | [ |
9 | MsZIP | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 丙二醛含量、相对含水量、可溶性糖含量、可溶性蛋白含量和脯氨酸含量提高 Increase MDA content,relative water content(RWC),soluble sugar content,soluble protein content and proline content | [ |
10 | MtbHLH148 | 蒺藜苜蓿 (M. truncatula ) | 拟南芥(Arabidopsis) | 根长增加 Increase root length | [ |
11 | MsGME | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 更低的MDA含量、较少膜损伤 Lower MDA content,and less membrane damage | [ |
12 | MsZEP | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 相对含水量和ABA 含量提高,调节气孔导度及气孔开度 Increase RWC and ABA content,and adjust stomata conductance and stomata opening | [ |
13 | MsOr | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 类胡萝卜素增加,丙二醛含量降低 increase carotenoids,decrease MDA content | [ |
14 | MfHyPRP | 黄花苜蓿(M. falcata) | 烟草(N. tabacum) | 转基因株系的鲜重显著高于野生型 The fresh weight of the transgenic line is significantly higher than that of the wild type | [ |
15 | MtALDH7A1 | 蒺藜苜蓿 (M. truncatula) | 拟南芥(Arabidopsis) | 影响根的生长及侧根数量的增多 Affect the growth of roots and increase the number of lateral roots | [ |
16 | MtLEA5B | 蒺藜苜蓿 (M. truncatula) | 大肠杆菌(Escherichia. coli) | 胁迫后LEA蛋白仍能保持一定的结构 The LEA protein can still maintain a certain structure after stress | [ |
17 | MtCAS31 | 蒺藜苜蓿 (M. truncatula) | 拟南芥(Arabidopsis) | 降低气孔密度 Decrease stomatal density | [ |
Table 1 Research on drought resistance related genes and their functions from Medicago
序号 No. | 基因 Genes | 基因来源 Gene sources | 转基因物种 Genetically modified species | 功能 Functions | 参考文献 Reference |
---|---|---|---|---|---|
1 | MsNAC2 | 紫花苜蓿(Medicago sativa) | 烟草(Nicotiana tabacum) | 丙二醛含量降低,脯氨酸含量、 SOD 和 POD 的活性提高 Reduce MDA content,increase proline content,SOD and POD activity | [ |
2 | MfNAC35 | 黄花苜蓿(Medicago falcata) | 烟草(N. tabacum) | 抗逆相关基因 CAT、SOD、P5CS表达的上调 Up-regulation of stress-resistance related genes CAT,SOD,and P5CS | [ |
3 | MfNACsa | 黄花苜蓿(M. falcata) | 蒺藜苜蓿 (Medicago truncatula) | MfNACsa在脱水胁迫下直接结合Glyl启动子并激活其转录 MfNACsa directly binds to the Glyl promoter and activates its transcription under dehydration stress | [ |
4 | MsMYB2L | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 脯氨酸、可溶性糖增加,降低了脂质过氧化 Increase proline and soluble sugars and reduce lipid peroxidation | [ |
5 | MfERF049 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF049在根中的表达 Drought stress induces the expression of MfERF049 in roots | [ |
6 | MfERF026 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF026在根、茎和叶均表达 Drought stress induces the expression of MfERF026 in roots,stems and leaves | [ |
7 | MfERF086 | 黄花苜蓿(M. falcata) | 蒺藜苜蓿(M. truncatula) | 干旱胁迫诱导MfERF086在根、茎和叶均表达 Drought stress induces the expression of MfERF086 in roots,stems and leaves | [ |
8 | MsERF11 | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 干旱胁迫诱导MsERF11表达 Drought stress induces the expression of MsERF11 | [ |
9 | MsZIP | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 丙二醛含量、相对含水量、可溶性糖含量、可溶性蛋白含量和脯氨酸含量提高 Increase MDA content,relative water content(RWC),soluble sugar content,soluble protein content and proline content | [ |
10 | MtbHLH148 | 蒺藜苜蓿 (M. truncatula ) | 拟南芥(Arabidopsis) | 根长增加 Increase root length | [ |
11 | MsGME | 紫花苜蓿(M. sativa) | 拟南芥(Arabidopsis) | 更低的MDA含量、较少膜损伤 Lower MDA content,and less membrane damage | [ |
12 | MsZEP | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 相对含水量和ABA 含量提高,调节气孔导度及气孔开度 Increase RWC and ABA content,and adjust stomata conductance and stomata opening | [ |
13 | MsOr | 紫花苜蓿(M. sativa) | 烟草(N. tabacum) | 类胡萝卜素增加,丙二醛含量降低 increase carotenoids,decrease MDA content | [ |
14 | MfHyPRP | 黄花苜蓿(M. falcata) | 烟草(N. tabacum) | 转基因株系的鲜重显著高于野生型 The fresh weight of the transgenic line is significantly higher than that of the wild type | [ |
15 | MtALDH7A1 | 蒺藜苜蓿 (M. truncatula) | 拟南芥(Arabidopsis) | 影响根的生长及侧根数量的增多 Affect the growth of roots and increase the number of lateral roots | [ |
16 | MtLEA5B | 蒺藜苜蓿 (M. truncatula) | 大肠杆菌(Escherichia. coli) | 胁迫后LEA蛋白仍能保持一定的结构 The LEA protein can still maintain a certain structure after stress | [ |
17 | MtCAS31 | 蒺藜苜蓿 (M. truncatula) | 拟南芥(Arabidopsis) | 降低气孔密度 Decrease stomatal density | [ |
序号 No. | 基因 Genes | 功能 Functions | 基因来源 Gene sources | 转基因苜蓿品种Transgenic alfalfa varieties | 抗旱性评价 Drought resistance evaluation | 参考文献Reference |
---|---|---|---|---|---|---|
1 | WXP1 | 乙烯反应元件结合转录因子 Ethylene response element binding transcription factor | 蒺藜苜蓿 Medicago truncatula | Regen SY-4D | 叶片表皮蜡质改变;提高净光合速率,蒸腾速率和气孔导度 Change wax in leaf cuticle; improve net photosynthetic rate,transpiration rate and stoma conductance | [ |
2 | ZFP1 | 编码 Cys2/His2 型锌指蛋白 Encoding Cys2/His2 zinc finger protein | 野生大豆 Glycine soja | 肇东苜蓿 Zhandong | MtCOR47,MtRAB18,MtP5CS 和MtRD2表达量提高 Increased expression level of MtCOR47,MtRAB18,MtP5CS and MtRD2 | [ |
3 | WRKY20 | 转录因子 Transcription factor | 野生大豆 G. soja | 肇东苜蓿 Zhandong | 脯氨酸和可溶性糖增加,角质层增厚 Increase content of proline and soluble sugar,and thicken stratum corneum | [ |
4 | ABP9 | bZIP家族的转录因子 Transcription factors of the bZIP family | 玉米 Zea mays | 保定苜蓿 Baoding alfalfa | 较高相对含水量、叶绿素含量和脯氨酸;较低丙二醛含量 Higher RWC,chlorophyll content and proline; lower malondialdehyde content | [ |
5 | ABF3 | bZIP转录因子 Transcription factors of the bZIP | 拟南芥 Arabidopsis thaliana | 新疆大叶Xinjiang Daye | 降低蒸腾速率和活性氧含量 Reduce transpiration rate and active oxygen content | [ |
6 | Mn-SOD | 锰超氧化 物歧化酶Mn-SOD | 烟草 Nicotiana plumbaginifolia | 保定苜蓿 Baoding | MnSOD 活性高,SOD 活性增加 Higher MnSOD activity,increase SOD activity | [ |
7 | AVP1 | 液泡H+-焦磷酶H+-PPase Vacuolar H+-PPase gene | 拟南芥 A. thaliana | 新疆大叶 Xinjiang Daye | 根系中积累较多的Na+、K+和 Ca2+ Accumulate in the root system more Na+、K+ and Ca2+ | [ |
8 | NHX 和 VP1-1 | Na+逆向转运蛋白和植物液泡膜H+-PPase基因 Na+ antiporter and plant vacuolar membrane H+-PPase gene | 霸王 Zygophyllum xanthoxylum | 新疆大叶Xinjiang Daye | 叶片和根系中积累较多的Na+、K+和 Ca2+ Accumulate more Na+、K+ and Ca2+ in the leaf and root | [ |
9 | codA | 胆碱氧化酶Choline oxidase | 细菌 Bacteria | 新疆大叶Xinjiang Daye | 保持较高的相对水分含量,提高甘氨酸甜菜碱和脯氨酸的含量 Maintain a high RWC and increase the content of glycine betaine and proline | [ |
10 | Bar和ALDH | 醛脱氢酶 Aldehyde dehydrogenase | 无芒隐子草 Cleistogenes songorica | 金皇后The Golden Queen | Na+含量低,K+含量高,相对含水量较高 Low Na+ content,high K+ content,high relative water content | [ |
11 | IbOr | 橙色基因 Orange gene | 甘薯 Ipomoea batatas | 新疆大叶Xinjiang Daye | 较高含水量,较低MDA含量 high RWC,low MDA content | [ |
12 | bar和LEA | 干旱胁迫应答因子 Drought stress response factor | 无芒隐子草 C. songorica | 金皇后 The Golden Quee | 较高的相对含水量、较高的地上部生物量、膜损伤和渗透胁迫低 High RWC,high above-ground biomass,low membrane damage and osmotic stress | [ |
13 | DHN | 脱水素 Dehydrin | 沙冬青 Ammopiptanthus mongolicus | 中苜2 号 Zhongmu No. 2 | Pro 的积累量增加,进一步诱导 Pro 合成途径相关基因的表达 The accumulation of Pro increases,which further induces the expression level of genes related to the pro synthesis pathway | [ |
14 | EDT1 | 编码同域亮氨酸拉链家族的转录因子 Transcription factor of leucine zipper family | 拟南芥 A. thaliana | 中苜1号 Zhongmu No.1 | 降低膜透性和丙二醛含量,较高的可溶性糖和脯氨酸含量、超氧化物歧化酶活性和叶绿素含量 Reduce membrane permeability and MDA content,higher soluble sugar and proline content,superoxide dismutase activity and chlorophyll content | [ |
15 | ABCG11 | 角质层脂质转运蛋白编码基因 Encoding lipid transport protein of stratum corneum | 霸王 Z. xanthoxylum | 新疆大叶 Xinjiang Daye | 改变了角质和蜡质的成分、厚度,调节气孔开合程度来减少水分的蒸发量 Change the composition and thickness of the cuticle and wax,and adjust the degree of stomata opening and closing to reduce water evaporation | [ |
16 | BADH | 甜菜碱醛脱氢酶 Betaine Aldehyde Dehydrogenase | 山菠菜 Atriplex hortensis | 中苜1号 Zhongmu No.1 | 可溶性糖含量增加,脯氨酸含量减少 Increase soluble sugar content,and decrease proline content | [ |
17 | TPS | 6-磷酸海藻糖合酶(TPS) Trehalose synthase gene | 酵母 Yeast | Regen SY27x | 较高含水量 Higher water content | [ |
18 | NDPK | 核苷二磷酸激酶 Nucleoside diphosphate kinase | 拟南芥 A. thaliana | 新疆大叶 Xinjiang Daye | 较高相对含水量,较高脯氨酸含量和较低MDA含量 Higher RWC,and higher proline content and lower MDA content | [ |
19 | Mcsu1 | 编码钼辅因子硫化酶 Encoding molybdenum cofactor sulfoxygenase | 山萮菜 Eutrema salsugineum | 新疆大叶Xinjiang Daye | 较低的ROS 含量、离子渗透和 MDA 含量 Lower reactive oxygen species(ROS),ion leakage,and MDA content | [ |
Table 2 Genes used to improve drought resistance of alfalfa and their functions
序号 No. | 基因 Genes | 功能 Functions | 基因来源 Gene sources | 转基因苜蓿品种Transgenic alfalfa varieties | 抗旱性评价 Drought resistance evaluation | 参考文献Reference |
---|---|---|---|---|---|---|
1 | WXP1 | 乙烯反应元件结合转录因子 Ethylene response element binding transcription factor | 蒺藜苜蓿 Medicago truncatula | Regen SY-4D | 叶片表皮蜡质改变;提高净光合速率,蒸腾速率和气孔导度 Change wax in leaf cuticle; improve net photosynthetic rate,transpiration rate and stoma conductance | [ |
2 | ZFP1 | 编码 Cys2/His2 型锌指蛋白 Encoding Cys2/His2 zinc finger protein | 野生大豆 Glycine soja | 肇东苜蓿 Zhandong | MtCOR47,MtRAB18,MtP5CS 和MtRD2表达量提高 Increased expression level of MtCOR47,MtRAB18,MtP5CS and MtRD2 | [ |
3 | WRKY20 | 转录因子 Transcription factor | 野生大豆 G. soja | 肇东苜蓿 Zhandong | 脯氨酸和可溶性糖增加,角质层增厚 Increase content of proline and soluble sugar,and thicken stratum corneum | [ |
4 | ABP9 | bZIP家族的转录因子 Transcription factors of the bZIP family | 玉米 Zea mays | 保定苜蓿 Baoding alfalfa | 较高相对含水量、叶绿素含量和脯氨酸;较低丙二醛含量 Higher RWC,chlorophyll content and proline; lower malondialdehyde content | [ |
5 | ABF3 | bZIP转录因子 Transcription factors of the bZIP | 拟南芥 Arabidopsis thaliana | 新疆大叶Xinjiang Daye | 降低蒸腾速率和活性氧含量 Reduce transpiration rate and active oxygen content | [ |
6 | Mn-SOD | 锰超氧化 物歧化酶Mn-SOD | 烟草 Nicotiana plumbaginifolia | 保定苜蓿 Baoding | MnSOD 活性高,SOD 活性增加 Higher MnSOD activity,increase SOD activity | [ |
7 | AVP1 | 液泡H+-焦磷酶H+-PPase Vacuolar H+-PPase gene | 拟南芥 A. thaliana | 新疆大叶 Xinjiang Daye | 根系中积累较多的Na+、K+和 Ca2+ Accumulate in the root system more Na+、K+ and Ca2+ | [ |
8 | NHX 和 VP1-1 | Na+逆向转运蛋白和植物液泡膜H+-PPase基因 Na+ antiporter and plant vacuolar membrane H+-PPase gene | 霸王 Zygophyllum xanthoxylum | 新疆大叶Xinjiang Daye | 叶片和根系中积累较多的Na+、K+和 Ca2+ Accumulate more Na+、K+ and Ca2+ in the leaf and root | [ |
9 | codA | 胆碱氧化酶Choline oxidase | 细菌 Bacteria | 新疆大叶Xinjiang Daye | 保持较高的相对水分含量,提高甘氨酸甜菜碱和脯氨酸的含量 Maintain a high RWC and increase the content of glycine betaine and proline | [ |
10 | Bar和ALDH | 醛脱氢酶 Aldehyde dehydrogenase | 无芒隐子草 Cleistogenes songorica | 金皇后The Golden Queen | Na+含量低,K+含量高,相对含水量较高 Low Na+ content,high K+ content,high relative water content | [ |
11 | IbOr | 橙色基因 Orange gene | 甘薯 Ipomoea batatas | 新疆大叶Xinjiang Daye | 较高含水量,较低MDA含量 high RWC,low MDA content | [ |
12 | bar和LEA | 干旱胁迫应答因子 Drought stress response factor | 无芒隐子草 C. songorica | 金皇后 The Golden Quee | 较高的相对含水量、较高的地上部生物量、膜损伤和渗透胁迫低 High RWC,high above-ground biomass,low membrane damage and osmotic stress | [ |
13 | DHN | 脱水素 Dehydrin | 沙冬青 Ammopiptanthus mongolicus | 中苜2 号 Zhongmu No. 2 | Pro 的积累量增加,进一步诱导 Pro 合成途径相关基因的表达 The accumulation of Pro increases,which further induces the expression level of genes related to the pro synthesis pathway | [ |
14 | EDT1 | 编码同域亮氨酸拉链家族的转录因子 Transcription factor of leucine zipper family | 拟南芥 A. thaliana | 中苜1号 Zhongmu No.1 | 降低膜透性和丙二醛含量,较高的可溶性糖和脯氨酸含量、超氧化物歧化酶活性和叶绿素含量 Reduce membrane permeability and MDA content,higher soluble sugar and proline content,superoxide dismutase activity and chlorophyll content | [ |
15 | ABCG11 | 角质层脂质转运蛋白编码基因 Encoding lipid transport protein of stratum corneum | 霸王 Z. xanthoxylum | 新疆大叶 Xinjiang Daye | 改变了角质和蜡质的成分、厚度,调节气孔开合程度来减少水分的蒸发量 Change the composition and thickness of the cuticle and wax,and adjust the degree of stomata opening and closing to reduce water evaporation | [ |
16 | BADH | 甜菜碱醛脱氢酶 Betaine Aldehyde Dehydrogenase | 山菠菜 Atriplex hortensis | 中苜1号 Zhongmu No.1 | 可溶性糖含量增加,脯氨酸含量减少 Increase soluble sugar content,and decrease proline content | [ |
17 | TPS | 6-磷酸海藻糖合酶(TPS) Trehalose synthase gene | 酵母 Yeast | Regen SY27x | 较高含水量 Higher water content | [ |
18 | NDPK | 核苷二磷酸激酶 Nucleoside diphosphate kinase | 拟南芥 A. thaliana | 新疆大叶 Xinjiang Daye | 较高相对含水量,较高脯氨酸含量和较低MDA含量 Higher RWC,and higher proline content and lower MDA content | [ |
19 | Mcsu1 | 编码钼辅因子硫化酶 Encoding molybdenum cofactor sulfoxygenase | 山萮菜 Eutrema salsugineum | 新疆大叶Xinjiang Daye | 较低的ROS 含量、离子渗透和 MDA 含量 Lower reactive oxygen species(ROS),ion leakage,and MDA content | [ |
[1] |
Cook DR. Medicago truncatula-a model in the making[J]. Current Opinion in Plant Biology, 1999, 2(4):301-304.
pmid: 10459004 |
[2] |
Liu ZP, Chen TL, Ma LC, et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa[J]. PLoS One, 2013, 8(12):e83549.
doi: 10.1371/journal.pone.0083549 URL |
[3] |
O’Rourke JA, Fu F, Bucciarelli B, et al. The Medicago sativa gene index 1.2:a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies[J]. BMC Genomics, 2015, 16(1):502.
doi: 10.1186/s12864-015-1718-7 URL |
[4] | 杨青川. 苜蓿种植区划及品种指南[M]. 北京: 中国农业大学出版社, 2012. |
Yang QC. Guide for alfalfa planting zone and cultivar[M]. Beijing: China Agricultural University Press, 2012. | |
[5] | 王俊杰, 云锦凤, 吕世杰. 黄花苜蓿种质的优良特性与利用价值[J]. 内蒙古农业大学学报:自然科学版, 2008, 29(1):215-219. |
Wang JJ, Yun JF, Lv SJ. Characteristics and utilizing values on the germplasm of Medicago falcata[J]. Journal of Inner Mongolia Agricultural University:Natural Science Edition, 2008, 29(1):215-219. | |
[6] | 杜凯青. 草原3号杂花苜蓿表型多样性研究[D]. 呼和浩特:内蒙古农业大学, 2020. |
Du KQ. Phenotypic diversity of Medicago varia Martin.cv. Caoyuan No3[D]. Hohhot:Inner Mongolia Agricultural University, 2020. | |
[7] |
Maureira-Butler IJ, Pfeil BE, Muangprom A, et al. The reticulate history of Medicago(Fabaceae)[J]. Systematic Biology, 2008, 57(3):466-482.
doi: 10.1080/10635150802172168 pmid: 18570039 |
[8] |
Maghsoodi M, Razmjoo J. Identify physiological markers for drought tolerance in alfalfa[J]. Agron J, 2015, 107(1):149-157.
doi: 10.2134/agronj14.0255 URL |
[9] |
Huang Z, Liu Y, Cui Z, et al. Soil water storage deficit of alfalfa(Medicago sativa)grasslands along ages in arid area(China)[J]. Field Crops Research, 2018, 221:1-6.
doi: 10.1016/j.fcr.2018.02.013 URL |
[10] |
Sivakumar MVK, Das HP, Brunini O. Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics[J]. Climatic Change, 2005, 70(70):31-72.
doi: 10.1007/s10584-005-5937-9 URL |
[11] |
Chen HT, Zeng Y, Yang YZ, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa[J]. Nature Communications, 2020, 11(1):2494.
doi: 10.1038/s41467-020-16338-x URL |
[12] |
Zhao Y, Wei X, Ji X, et al. Endogenous NO-mediated transcripts involved in photosynjournal and carbohydrate metabolism in alfalfa(Medicago sativa L.)seedlings under drought stress[J]. Plant Physiology and Biochemistry, 2019, 141:456-465.
doi: 10.1016/j.plaphy.2019.06.023 URL |
[13] |
Luo D, Zhou Q, Wu YQ, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa(Medicago sativa L.)[J]. BMC Plant Biology, 2019, 19(1):32.
doi: 10.1186/s12870-019-1630-4 URL |
[14] |
Shen C, Du H, Chen Z, et al. The Chromosome-Level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research[J]. Mol Plant, 2020, 13(9):1250-1261.
doi: S1674-2052(20)30216-1 pmid: 32673760 |
[15] |
Zhang T, Yu LX, Zheng P, et al. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa(Medicago sativa L.)using genome-wide association studies with genotyping by sequencing[J]. PLoS One, 2015, 10(9):e0138931.
doi: 10.1371/journal.pone.0138931 URL |
[16] |
Ray IM, Han Y, Lei E, et al. Identification of QTL for alfalfa forage biomass productivity during drought[J]. Crop Science, 2015. DOI: 10.2135/cropsci2014.12.0840
doi: 10.2135/cropsci2014.12.0840 |
[17] |
Wang Z, Wang X, Zhang H, et al. A genome-wide association study approach to the identification of candidate genes underlying agronomic traits in alfalfa(Medicago sativa L.)[J]. Plant Biotechnology Journal, 2020, 18(3):611-613.
doi: 10.1111/pbi.13251 pmid: 31487419 |
[18] |
Miao Z, Xu W, Li D, et al. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway[J]. BMC Genomics, 2015, 16(1):818-836.
doi: 10.1186/s12864-015-2019-x URL |
[19] |
Duan M, Zhang R, Zhu F, et al. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress[J]. The Plant Cell, 2017, 29(7):1748-1772.
doi: 10.1105/tpc.17.00044 pmid: 28684428 |
[20] | 苗震龑. 黄花苜蓿非生物胁迫数据挖掘与系统分析[D]. 北京:中国农业大学, 2014. |
Miao ZY. Data mining and systemic analysis of Medicago falcata under abiotic stress[D]. Beijing:China Agricultural University, 2014. | |
[21] | Zhang JY, Cruz De Carvalho MH, Torres Jerez I, et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering[J]. Plant Cell & Environment, 2014, 37(11):2553-2576. |
[22] | 刘赢. 蒺藜苜蓿R2R3-MYB转录因子的发掘及其对非生物胁迫反应研究[D]. 哈尔滨:哈尔滨师范大学, 2017. |
Liu Y. Identification and characterization of R2R3-MYB transcription factor and their response to the abiotic stress in Medicago truncatula[D]. Harbin:Harbin Normal University, 2017. | |
[23] |
Kang Y, Sakiroglu M, et al. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula[J]. Plant Cell Environ, 2015, 38(10):1997-2011.
doi: 10.1111/pce.12520 URL |
[24] |
Wang T, Chen L, Zhao M, et al. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing[J]. BMC Genomics, 2011, 12(1):367-378.
doi: 10.1186/1471-2164-12-367 URL |
[25] | 杨青川, 孙彦, 康俊梅. 紫花苜蓿耐盐相关基因克隆研究进展[J]. 草地学报, 2005, 13(3):253-256. |
Yang QC, Sun Y, Kang JM. Research on the advancement of salt tolerant gene in alfalfa[J]. Acta Agrestia Sinica, 2005, 13(3):253-256. | |
[26] | 申玉华, 徐振军, 唐立红, 等. 紫花苜蓿NAC类转录因子基因MsNAC2的克隆及其功能分析[J]. 中国农业科学, 2015, 48(15):2925-2938. |
Shen YH, Xu ZJ, Tang LH, et al. Cloning and function analysis of the MsNAC2 gene with NAC transcription factor from alfalfa[J]. Scientia Agricultura Sinica, 2015, 48(15):2925-2938. | |
[27] | 常娜. 黄花苜蓿MfNAC35基因的功能分析[D]. 呼和浩特:内蒙古大学, 2018. |
Chang N. Funtional analysis of MFNAC35 gene in Medicago falcata[D]. Hohhot:Inner Mongolia University, 2018. | |
[28] |
Song Y, Lv J, Qiu N, et al. The constitutive expression of alfalfa MsMYB2L enhances salinity and drought tolerance of Arabidopsis thaliana[J]. Plant Physiol Biochem, 2019, 141:300-305.
doi: 10.1016/j.plaphy.2019.06.007 URL |
[29] | 张春霄. AP2/EREBP家族MfERF049基因对提高豆科植物生物胁迫和非生物胁迫抗性的功能分析[D]. 呼和浩特:内蒙古大学, 2019. |
Zhang CX. The functional analysis of MfERF049 gene in AP2/EREBP Family with improve biological and abiotic stress resistance about leguminous plant[D]. Hohhot:Inner Mongolia University, 2019. | |
[30] | 付佳宾. 野生黄花苜蓿ERF家族成员MfERF026和MfERF086基因的克隆及初步功能研究[D]. 呼和浩特:内蒙古大学, 2019. |
Fu JB. Identification of MfERF026 and MfERF086 genes from ERF family of wild Medicago falcata[D]. Hohhot:Inner Mongolia University, 2019. | |
[31] |
Chen T, Yang Q, Zhang X, et al. An alfalfa(Medicago sativa L.)ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2012, 31(9):1737-1746.
doi: 10.1007/s00299-012-1287-z URL |
[32] |
Li Y, Sun Y, Yang Q, et al. Isolation and characterization of a gene from Medicago sativa L. encoding a bZIP transcription factor[J]. Molecular Biology Reports, 2013, 40(2):1227-1239.
doi: 10.1007/s11033-012-2165-z pmid: 23096087 |
[33] | 王菊萍, 王珍, 张铁军, 等. 蒺藜苜蓿MtbHLH148转录因子的克隆与转化及其功能分析[J]. 西北植物学报, 2019, 39(6):963-973. |
Wang JP, Wang Z, Zhang TJ, et al. Cloning and analysis of a basic helix-loop-helix(bHLH)transcription factor MtbHLH148 from Medicago truncatula L.[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(6):963-973. | |
[34] |
Ma L, Wang Y, Liu W, et al. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation[J]. Biotechnol Lett, 2014, 36(11):2331-2341.
doi: 10.1007/s10529-014-1598-y URL |
[35] |
Zhang Z, Wang Y, Chang L, et al. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa(Medicago sativa), confers drought and salt tolerance in transgenic tobacco[J]. Plant Cell Reports, 2016, 35(2):439-453.
doi: 10.1007/s00299-015-1895-5 URL |
[36] |
Wang Z, et al. Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses[J]. Plant Physiol Biochem, 2018, 130:613-622.
doi: 10.1016/j.plaphy.2018.08.017 URL |
[37] | Tan J, Zhuo C, Guo Z. Nitric oxide mediates cold and dehydration induced expression of a novel MfHyPRP that confers tolerance to abiotic stress[J]. Physiol Plant, 2013, 149(3):310-320. |
[38] | 黄思源. 干旱胁迫下蒺藜苜蓿的转录组分析及醛脱氢酶基因MtALDH7A1初步功能研究[D]. 杨凌:西北农林科技大学, 2019. |
Huang SY. Transcriptome analysis of Medicago truncatula and functional analysis of MtALDH7A1 gene under drought stress[D]. Yangling:North West Agriculture and Forestry University, 2019. | |
[39] | 张业猛, 沈迎芳, 王英芳, 等. 蒺藜苜蓿MtLEA5B的克隆和功能分析[J]. 生物技术通报, 2018, 34(7):101-107. |
Zhang YM, Shen YF, Wang YF, et al. Cloning and Functional Analysis of the MtLEA5B Gene from Medicago truncatula[J]. Biotechnology Bulletin, 2018, 34(7):101-107. | |
[40] |
Xie C, Zhang R, Qu Y, et al. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density[J]. New Phytologist, 2012, 195(1):124-135.
doi: 10.1111/j.1469-8137.2012.04136.x URL |
[41] | 师尚礼, 南丽丽, 郭全恩. 中国苜蓿育种取得的成就及展望[J]. 植物遗传资源学报, 2010, 11(1):46-51. |
Shi SL, Nan LL, Guo QE. Achievements and prospect of alfalfa breeding in china[J]. Journal of Plant Genetic Resources, 2010, 11(1):46-51. | |
[42] |
Hubbard K, Hassanein N. Confronting coexistence in the United States:organic agriculture, genetic engineering, and the case of roundup ready alfalfa[J]. Agriculture and Human Values, 2013, 30(3):325-335.
doi: 10.1007/s10460-012-9394-6 URL |
[43] | Marita JM, Ralph J, Hatfield RD, et al. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase[J]. Phytochemistry, 2003, 1:53-65. |
[44] |
Ashraf M, Akram NA. Improving salinity tolerance of plants through conventional breeding and genetic engineering:An analytical comparison[J]. Biotechnol Adv, 2009, 27(6):744-752.
doi: 10.1016/j.biotechadv.2009.05.026 URL |
[45] |
Webb KJ. Transformation of forage legumes using Agrobacterium tumefaciens[J]. Theor Appl Genet, 1986, 72(1):53-58.
doi: 10.1007/BF00261454 pmid: 24247771 |
[46] |
Zhang JY, Broeckling CD, Blancaflor EB, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa L.)[J]. Plant Journal, 2005, 42(5):689-707.
doi: 10.1111/tpj.2005.42.issue-5 URL |
[47] |
Tang LL, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa(Medicago sativa L.)[J]. Plant Physiology and Biochemistry, 2013, 71:22-30.
doi: 10.1016/j.plaphy.2013.06.024 URL |
[48] |
Tang L, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa(Medicago sativa L.)[J]. Plant Cell, Tissue and Organ Culture, 2014, 118(1):77-86.
doi: 10.1007/s11240-014-0463-y URL |
[49] | 李静. 玉米ABP9基因转化紫花苜蓿及其抗旱性分析[D]. 兰州:兰州大学, 2012. |
Li J. Expression of ABP9 enhances tolerance to drought stress in transgenic alfalfa[D]. Lanzhou:Lanzhou University, 2012. | |
[50] |
Wang Z, Su G, Li M, et al. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa[J]. Plant Physiol Biochem, 2016, 109:199-208.
doi: 10.1016/j.plaphy.2016.09.020 URL |
[51] |
Mckersie BD, Bowley SR, Harjanto E, et al. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiology, 1996, 111(4):1177-1181.
doi: 10.1104/pp.111.4.1177 URL |
[52] | 韩利芳, 张玉发. 烟草MnSOD基因在保定苜蓿中的转化[J]. 生物技术通报, 2004(1):39-42. |
Han LF, Zhang YF. The transformation of tobacco MnSOD gene into Baoding alfalfa[J]. Biotechnology Bulletin, 2004(1):39-46. | |
[53] |
Bao A, Wang S, Wu G, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa(Medicago sativa L.)[J]. Plant Science, 2009, 176(2):232-240.
doi: 10.1016/j.plantsci.2008.10.009 URL |
[54] |
Bao AK, Du BQ, Touil L, et al. Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions[J]. Plant Biotechnol J, 2016, 14(3):964-975.
doi: 10.1111/pbi.2016.14.issue-3 URL |
[55] |
Li H, Wang Z, Ke Q, et al. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa[J]. Plant Physiology and Biochemistry, 2014, 85:31-40.
doi: 10.1016/j.plaphy.2014.10.010 URL |
[56] | Duan Z, Zhang D, Zhang J, et al. Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa(Medicago sativa L.)[J]. Frontiers in Plant Science, 2015, 6:1115. |
[57] | Wang Z, Ke Q, Kim MD, et al. Transgenic alfalfa plants expressing the sweet potato Orange gene exhibit enhanced abiotic stress tolerance[J]. PLoS One, 2015, 10(5):e126050. |
[58] |
Zhang J, Duan Z, Zhang DP, et al. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa(Medicago sativa L.)[J]. Biochemical and Biophysical Research Communications, 2016, 472(1):75-82.
doi: 10.1016/j.bbrc.2016.02.067 pmid: 26906624 |
[59] | 聂利珍, 刘红葵, 房永雨. 转AmDHN基因紫花苜蓿耐旱性的研究[J]. 北方农业学报, 2017, 45(1):6-9. |
Nie LZ, Liu HK, Fang YY. Study on enhancing tolerance to drought stress of transgenic alfalfa(Medicago sativa L.)with the AmDHN gene[J]. Journal of Northern Agriculture, 2017, 45(1):6-9. | |
[60] |
Zheng GS, Fan C, Di S, et al. Over expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa(Medicago sativa L.)[J]. Frontiers in Plant Science, 2017, 8:2125.
doi: 10.3389/fpls.2017.02125 URL |
[61] | 田野. 霸王ZxABCG11的功能验证及其对紫花苜蓿(Medicago sativa L.)的遗传转化[D]. 兰州:兰州大学, 2017. |
Tian Y. functional verification of ZxABCG11 from Zygophyllum xanthoxylum and genetic transformation to alfalfa(Medicago sativa L.)[D]. Lanzhou:Lanzhou University, 2017. | |
[62] | 刘媛, 夏阳, 杨克强, 等. 渗透胁迫下转BADH基因苜蓿组培苗的抗性响应[J]. 中国农学通报, 2009, 25(4):133-136. |
Liu Y, Xia Y, Yang KQ, et al. Physiological responses to osmotic stress in Transgenic(BADH)Medicago Sativa[J]. Chinese Agricultural Science Bulletin, 2009, 25(4):133-136. | |
[63] |
Suárez R, Calderón C, Iturriaga G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose[J]. Crop Science, 2009, 49(5):1791-1799.
doi: 10.2135/cropsci2008.09.0573 URL |
[64] |
Wang Z, Li H, Ke Q, et al. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses[J]. Plant Physiol Biochem, 2014, 84:67-77.
doi: 10.1016/j.plaphy.2014.08.025 URL |
[65] |
Zhou C, Ma Z Y, Zhu L, et al. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynjournal and increases drought resistance in alfalfa(Medicago sativa L.)[J]. Genet Mol Res, 2015, 14(4):17204-17218.
doi: 10.4238/2015.December.16.20 pmid: 26681214 |
[66] |
Zhu J. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273.
doi: 10.1146/annurev.arplant.53.091401.143329 URL |
[67] | 马金星, 张吉宇, 单丽燕, 等. 中国草品种审定登记工作进展[J]. 草业学报, 2011, 20(1):206-213. |
Ma JX, Zhang JY, Shan LY, et al. Progress of the herbage variety approval and registration in China[J]. Acta Prataculturae Sinica, 2011, 20(1):206-213. |
[1] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[2] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[3] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[4] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[5] | QI Fang-ting, HUANG He. Research Advance in the Regulation Mechanism of Flower Spots Formation in Ornamental Plant [J]. Biotechnology Bulletin, 2023, 39(10): 17-28. |
[6] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[7] | LIU Zi-ran, ZHEN Zhen, CHEN Qiang, LI Yue-ying, WANG Ze, PANG Hong-bo. Research Progress in Plant Response to Cd Stress [J]. Biotechnology Bulletin, 2022, 38(6): 13-26. |
[8] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[9] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
[10] | YANG Qing-qing, TANG Jia-qi, ZHANG Chang-quan, GAO Ji-ping, LIU Qiao-quan. Application and Prospect of KASP Marker Technology in Main Crops [J]. Biotechnology Bulletin, 2022, 38(4): 58-71. |
[11] | LI Shu-wen, LI Yin-rui-zhi, DONG Di, WANG Meng-di, CHAO Yue-hui, HAN Lie-bao. Transformation and Expression Pattern Analysis of Gene MtSAG113 from Medicago truncatula [J]. Biotechnology Bulletin, 2022, 38(1): 108-114. |
[12] | SHANG Xiao-yao, ZHOU Ling-fang, YIN Qian-qian, CHAO Yue-hui. Sequencing and Analysis of Full-length Transcriptome from Medicago truncatula [J]. Biotechnology Bulletin, 2021, 37(8): 131-140. |
[13] | LIU Hai-guang, LUO Zhen, DONG He-zhong. Research Progress on the Regulation of NO3- Uptake and Transport in Plant [J]. Biotechnology Bulletin, 2021, 37(6): 192-201. |
[14] | FENG Lian-jie, AN Wen-jing, LIU Di, LIU Ya-fei, WANG Kai-jie, LIANG Wei-hong. Progress in Research of Rice Trichome Related Genes [J]. Biotechnology Bulletin, 2021, 37(6): 236-243. |
[15] | WU Qi-man, ZHANG Jin-mei, LI Yue-ying, ZHANG Ying. Recent Advances on the Mechanism of Beneficial Microbial Fertilizers in Crops [J]. Biotechnology Bulletin, 2021, 37(5): 221-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||