Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 47-55.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0137
Previous Articles Next Articles
DING Xiao-yan1(), WANG Yue2, WANG Ning1,2, LI Wan-ting1,2, DING Guo-chun2(), LI Ji2
Received:
2022-01-28
Online:
2022-05-26
Published:
2022-06-10
Contact:
DING Guo-chun
E-mail:dingxiaoyan@oricau.cn;gc_ding@cau.edu.cn
DING Xiao-yan, WANG Yue, WANG Ning, LI Wan-ting, DING Guo-chun, LI Ji. Application of Exogenous Microbial Inoculum in the Composting of Kitchen Waste[J]. Biotechnology Bulletin, 2022, 38(5): 47-55.
[1] |
Yin Y, Liu YJ, Meng SJ, et al. Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Appl Energy, 2016, 179:1131-1137.
doi: 10.1016/j.apenergy.2016.07.083 URL |
[2] |
Tian L, Zhang LX, Liu YT, et al. Clean production of ethyl levulinate from kitchen waste[J]. J Clean Prod, 2020, 268:122296.
doi: 10.1016/j.jclepro.2020.122296 URL |
[3] |
Corrado S, Sala S. Food waste accounting along global and European food supply chains:state of the art and outlook[J]. Waste Manag, 2018, 79:120-131.
doi: 10.1016/j.wasman.2018.07.032 URL |
[4] |
Dahiya S, Sarkar O, Swamy YV, et al. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J]. Bioresour Technol, 2015, 182:103-113.
doi: 10.1016/j.biortech.2015.01.007 URL |
[5] |
Awasthi SK, Sarsaiya S, Awasthi MK, et al. Changes in global trends in food waste composting:research challenges and opportunities[J]. Bioresour Technol, 2020, 299:122555.
doi: 10.1016/j.biortech.2019.122555 URL |
[6] | 阎中, 王婧瑶, 王凯军. 基于强化推流工艺(PFR)的餐厨垃圾堆肥微生物群落结构解析[J]. 中国沼气, 2020, 38(3):3-9. |
Yan Z, Wang JY, Wang KJ. Analysis of microbial community structure in food waste composting with plug flow reactor(PFR)[J]. China Biogas, 2020, 38(3):3-9. | |
[7] | 王佳君. 餐厨垃圾的厌氧发酵及资源化利用[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
Wang JJ. Anaerobic digestion and resource utilization for food waste[D]. Harbin: Harbin Engineering University, 2016. | |
[8] | Gill SS, Jana AM, Shrivastav A. Anaerobic bacterial degradation of kitchen waste:a review[J]. International Journal of Research and Development in Pharmacy and Life Sciences, 2014, 3(2):850-854. |
[9] | 刘阳, 徐凤花, 王彦伟, 等. 低温复合发酵剂对冬季牛粪堆肥微生物多样性的影响[J]. 中国土壤与肥料, 2012(3):94-98. |
Liu Y, Xu FH, Wang YW, et al. Influence of low temperature compound starter on varieties of biodiversity in cow muck compost in winter[J]. Soil Fertil Sci China, 2012(3):94-98. | |
[10] |
Mao H, Zhang HY, Fu Q, et al. Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change[J]. Bioresour Technol, 2019, 292:121896.
doi: 10.1016/j.biortech.2019.121896 URL |
[11] | 张晓叶. 餐厨废弃物好氧堆肥研究[J]. 污染防治技术, 2017, 30(6):29-30, 45. |
Zhang XY. A study on kitchen waste aerobic composting[J]. Pollut Control Technol, 2017, 30(6):29-30, 45. | |
[12] |
Jurado M, López MJ, Suárez-Estrella F, et al. Exploiting composting biodiversity:study of the persistent and biotechnologically relevant microorganisms from lignocellulose-based composting[J]. Bioresour Technol, 2014, 162:283-293.
doi: 10.1016/j.biortech.2014.03.145 URL |
[13] |
Albrecht R, Périssol C, Ruaudel F, et al. Functional changes in culturable microbial communities during a co-composting process:carbon source utilization and co-metabolism[J]. Waste Manag, 2010, 30(5):764-770.
doi: 10.1016/j.wasman.2009.12.008 URL |
[14] |
Wang JY, Stabnikova O, Ivanov V, et al. Intensive aerobic bioconversion of sewage sludge and food waste into fertiliser[J]. Waste Manag Res, 2003, 21(5):405-415.
doi: 10.1177/0734242X0302100503 URL |
[15] | Cerda A, Artola A, et al. Composting of food wastes:status and challenges[J]. Bioresour Technol, 2018, 248(Pt A):57-67. |
[16] | 叶世娟, 王成志. 增施有机肥料改善土壤物理环境[J]. 中国农业大学学报, 1997, 2(S1):151-155. |
Ye SJ, Wang CZ. Add organic manure to soil to improve the physical behavior[J]. J China Agric Univ, 1997, 2(S1):151-155. | |
[17] |
Ishii K, Fukui M, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J]. J Appl Microbiol, 2000, 89(5):768-777.
pmid: 11119150 |
[18] |
Wang XJ, Pan SQ, Zhang ZJ, et al. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community[J]. Bioresour Technol, 2017, 224:397-404.
doi: 10.1016/j.biortech.2016.11.076 URL |
[19] | 赵彬涵, 孙宪昀, 黄俊, 等. 微生物在有机固废堆肥中的作用与应用[J]. 微生物学通报, 2021, 48(1):223-240. |
Zhao BH, Sun XY, Huang J, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes:a review[J]. Microbiol China, 2021, 48(1):223-240. | |
[20] |
Qin RH, Su CY, Mo TH, et al. Effect of excess sludge and food waste feeding ratio on the nutrient fractions, and bacterial and fungal community during aerobic co-composting[J]. Bioresour Technol, 2021, 320(Pt A):124339.
doi: 10.1016/j.biortech.2020.124339 URL |
[21] | 孟雅. 厨余废弃物好氧发酵嗜高温复合菌剂的研发[D]. 北京: 中国农业大学, 2021. |
MengY. Development of microbial inoculants for aerobic fermentation of kitchen waste using thermophilic bacteria[D]. Beijing: China Agricultural University, 2021. | |
[22] | 赵彩虹. 餐厨废弃物堆肥的油脂降解菌筛选应用与机制分析[D]. 北京: 中国农业大学, 2021. |
Zhao CH. Screening and application of oil degrading bacteria in food waste composting and analysis of mechanism[D]. Beijing: China Agricultural University, 2021. | |
[23] |
Kitamura R, Ishii K, Maeda I, et al. Evaluation of bacterial communities by bacteriome analysis targeting 16S rRNA genes and quantitative analysis of ammonia monooxygenase gene in different types of compost[J]. J Biosci Bioeng, 2016, 121(1):57-65.
doi: S1389-1723(15)00198-X pmid: 26111599 |
[24] |
Hemmi H, Shimoyama T, Nakayama T, et al. Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic conditions[J]. J Biosci Bioeng, 2004, 97(2):119-126.
doi: 10.1016/S1389-1723(04)70178-4 URL |
[25] |
Pankratov TA, Ivanova AO, Dedysh SN, et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat[J]. Environ Microbiol, 2011, 13(7):1800-1814.
doi: 10.1111/j.1462-2920.2011.02491.x pmid: 21564458 |
[26] | Chen S, Cheng H, Wyckoff K N, et al. Linkages of Firmicutes and Bacteroidetes populations to methanogenic process performance[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(6):771-781. |
[27] |
Li Y, Chen Z, et al. Changes in aerobic fermentation and microbial community structure in food waste derived from different dietary regimes[J]. Bioresource Technology, 2020, 317(8):123948.
doi: 10.1016/j.biortech.2020.123948 URL |
[28] |
Nakasaki K, Hirai H, Mimoto H, et al. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting[J]. Sci Total Environ, 2019, 671:1237-1244.
doi: 10.1016/j.scitotenv.2019.03.341 URL |
[29] |
Carvalho R, TLR Corrêa, JCMD Silva, et al. Optimization of culture conditions for the production of amylases by thermophilic Bacillus sp. and hydrolysis of starches by the action of the enzymes[J]. Ciência e Tecnologia de Alimentos, 2008, 28(2):380-386.
doi: 10.1590/S0101-20612008000200017 URL |
[30] | 席北斗, 刘鸿亮, 孟伟, 等. 厨余垃圾堆肥蓬松剂技术研究[J]. 安全与环境学报, 2003(3):41-45. |
Xi B, Liu HL, Meng W, et al. An improvement to domestic waste composting by adding different bulking agents[J]. Journal of Safety and Environment, 2003(3):41-45. | |
[31] | 张剑敏. 餐厨垃圾的微生物处理技术[J]. 中国资源综合利用, 2017, 35(2):28-29. |
Zhang JM. Microbial treatment technology of food waste[J]. China Resour Compr Util, 2017, 35(2):28-29. | |
[32] | 石娟, 周攀, 陈意超, 等. 一株耐盐嗜热菌Aneurinibacillus thermoaerophilus H7的分离及其油脂降解特性[J]. 应用与环境生物学报, 2021, 27(1):214-219. |
Shi J, Zhou P, et al. Isolation and oil degrading characterization of a halotolerant thermophile Aneurinibacillus thermoaerophilus H7[J]. Chin J Appl Environ Biol, 2021, 27(1):214-219. | |
[33] | 郑旴, 陈泽斌, 夏体渊, 等. 餐厨垃圾好氧降解菌的筛选鉴定[J]. 西南农业学报, 2016, 29(2):420-424. |
Zheng X, Chen ZB, Xia TY, et al. Screening and identification of aerobic degradation bacteria in kitchen waste[J]. Southwest China J Agric Sci, 2016, 29(2):420-424. | |
[34] | 万文娟, 张赟彬, 聂志妍, 等. 耐高温餐厨垃圾分解细菌的筛选、鉴定及应用[J]. 食品与机械, 2019, 35(6):54-58, 68. |
Wan WJ, Zhang YB, Nie ZY, et al. The screening and identification of thermostable decomposition bacteria in kitchen waste and the relative application[J]. Food Mach, 2019, 35(6):54-58, 68. | |
[35] |
Tran QNM, Mimoto H, Nakasaki K. Inoculation of lactic acid bacterium accelerates organic matter degradation during composting[J]. Int Biodeterior Biodegrad, 2015, 104:377-383.
doi: 10.1016/j.ibiod.2015.07.007 URL |
[36] | 李华芝, 李秀艳, 胡启平, 等. 处理厨余垃圾的高温菌剂研制及其降解性质研究[J]. 华东师范大学学报:自然科学版, 2011(2):126-133. |
Li HZ, Li XY, Hu QP, et al. Development and study of the thermophilic microbial agent for disposing the food waste and its degradation properties[J]. J East China Norm Univ Nat Sci, 2011(2):126-133. | |
[37] | Awasthi MK, Selvam A, Lai KM, et al. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium[J]. Bioresour Technol, 2017, 245(Pt A):665-672. |
[38] |
Chan MT, Selvam A, Wong JWC. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresour Technol, 2016, 200:838-844.
doi: 10.1016/j.biortech.2015.10.093 URL |
[39] |
Cheung HNB, Huang GH, Yu H. Microbial-growth inhibition during composting of food waste:effects of organic acids[J]. Bioresour Technol, 2010, 101(15):5925-5934.
doi: 10.1016/j.biortech.2010.02.062 URL |
[40] |
Wang X, Selvam A, Chan MT, et al. Nitrogen conservation and acidity control during food wastes composting through struvite formation[J]. Bioresour Technol, 2013, 147:17-22.
doi: 10.1016/j.biortech.2013.07.060 URL |
[41] | 宋彩红, 张亚丽, 李鸣晓, 等. 抗酸化微生物复合菌系对餐厨垃圾堆肥腐殖质组分光谱学性质的影响[J]. 光谱学与光谱分析, 2019, 39(11):3533-3539. |
Song CH, Zhang YL, Li MX, et al. Impact of anti-acidification microbial consortium on spectral characteristics of humic fractions in food waste compost[J]. Spectrosc Spectr Anal, 2019, 39(11):3533-3539. | |
[42] |
Nakasaki K, Araya S, Mimoto H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting[J]. Bioresour Technol, 2013, 144:521-528.
doi: 10.1016/j.biortech.2013.07.005 URL |
[43] |
Tran QNM, Mimoto H, Koyama M, et al. Lactic acid bacteria modulate organic acid production during early stages of food waste composting[J]. Sci Total Environ, 2019, 687:341-347.
doi: 10.1016/j.scitotenv.2019.06.113 URL |
[44] |
Song CH, Li MX, Qi H, et al. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting[J]. Bioresour Technol, 2018, 259:1-9.
doi: 10.1016/j.biortech.2018.03.022 URL |
[45] |
Song CH, Zhang YL, Xia XF, et al. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste[J]. Microb Biotechnol, 2018, 11(6):1124-1136.
doi: 10.1111/1751-7915.13294 URL |
[46] | 丁杰, 郝艳, 侯佳奇, 等. 接种抗酸化复合菌对餐厨废弃物堆肥酸化缓解及腐殖化的影响[J]. 环境科学研究, 2016, 29(12):1887-1894. |
Ding J, Hao Y, Hou JQ, et al. Effects of anti-acidification microbial agents(AAMA)on reducing acidification and promoting humification during kitchen waste composting[J]. Res Environ Sci, 2016, 29(12):1887-1894. | |
[47] | 詹亚斌, 魏雨泉, 陶兴玲, 等. 耐高温油脂降解菌株的筛选、鉴定及其在好氧堆肥中的应用[J]. 环境污染与防治, 2021, 43(7):812-818. |
Zhan YB, Wei YQ, Tao XL, et al. Screening and identification of high temperature resistant oil degrading strain and its application in aerobic composting[J]. Environ Pollut Control, 2021, 43(7):812-818. | |
[48] | 余培斌, 杜晶, 陈建新. 高温好氧堆肥过程中芽孢杆菌的筛选、鉴定及应用[J]. 食品与发酵工业, 2020, 46(12):199-205, 212. |
Yu PB, Du J, Chen JX. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its application[J]. Food Ferment Ind, 2020, 46(12):199-205, 212. | |
[49] |
Ke GR, Lai CM, Liu YY, et al. Inoculation of food waste with the thermo-tolerant lipolytic actinomycete Thermoactinomyces vulgaris A31 and maturity evaluation of the compost[J]. Bioresour Technol, 2010, 101(19):7424-7431.
doi: 10.1016/j.biortech.2010.04.051 URL |
[50] | Awasthi MK, Selvam A, Chan MT, et al. Bio-degradation of oily food waste employing thermophilic bacterial strains[J]. Bioresour Technol, 2018, 248(Pt A):141-147. |
[51] | 王攀, 李冰心, 黄燕冰, 等. 含盐量对餐厨垃圾干式厌氧发酵的影响[J]. 环境污染与防治, 2015, 37(5):27-31. |
Wang P, Li BX, Huang YB, et al. Effect of salt content on dry anaerobic fermentation for food waste[J]. Environ Pollut Control, 2015, 37(5):27-31. | |
[52] |
Liu L, Wang SQ, Guo XP, et al. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting[J]. Waste Manag, 2018, 73:101-112.
doi: 10.1016/j.wasman.2017.12.026 URL |
[53] |
Cheng HF, Hu YA. Municipal solid waste(MSW)as a renewable source of energy:current and future practices in China[J]. Bioresour Technol, 2010, 101(11):3816-3824.
doi: 10.1016/j.biortech.2010.01.040 URL |
[54] | 任连海, 黄燕冰, 王攀. 含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J]. 重庆大学学报, 2014, 37(7):104-109. |
Ren LH, Huang YB, Wang P. Effect of salt content on the change of physicochemical characteristics of restaurant garbage during aerobic composting[J]. J Chongqing Univ, 2014, 37(7):104-109. | |
[55] | 陈彦廷. 耐盐菌剂堆肥及其强化番茄抗盐胁迫的研究[D]. 北京: 中国农业大学, 2021. |
Chen YT. Effects of halotolerant bacterial consortium on kitchen waste composting and its improvement of tomato resistance to salt stress[D]. Beijing: China Agricultural University, 2021. | |
[56] | 陈远哲, 黄熙莺, 鲁安娜, 等. 耐盐菌发酵对咸鸭蛋蛋清脱盐及抗氧化活性的影响[J]. 食品与生物技术学报, 2019, 38(11):130-136. |
Chen YZ, Huang XY, Lu AN, et al. Research on the desalination salted duck egg white and antioxidant activity by salt-tolerant bacterium fermentation[J]. J Food Sci Biotechnol, 2019, 38(11):130-136. | |
[57] | 宋彩红, 齐辉, 等. 耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾[J]. 环境工程, 2021, 39(5):111-117, 130. |
Song CH, Qi H, et al. High-speed treatment of food waste by continuous high-temperature composting enhanced by thermophilic microbial consortium[J]. Environ Eng, 2021, 39(5):111-117, 130. | |
[58] |
Tsai SH, Liu CP, Yang SS. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes[J]. Renew Energy, 2007, 32(6):904-915.
doi: 10.1016/j.renene.2006.04.019 URL |
[59] | 李龙涛, 饶中秀, 等. 微生物菌剂在餐厨垃圾和水稻秸秆堆肥上的效果研究[J]. 湖南农业科学, 2021(8):28-31. |
Li LT, Rao ZX, et al. Effects of microbial agents on kitchen waste and rice straw composting[J]. Hunan Agric Sci, 2021(8):28-31. | |
[60] | 邹德勋. 以菌糠为调理剂的餐厨垃圾好氧堆肥技术及其机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
Zou DX. Research on aerobic composting technology of kitchen waste with spend mushroom substrate as amendments and its mechanism[D]. Harbin: Harbin Institute of Technology, 2010. | |
[61] | 诸葛诚祥. 菌糠高效降解菌剂的研发及其在堆肥中的应用[D]. 杭州: 浙江大学, 2017. |
Zhuge CX. Research on high efficiency degrading microbial inoculum of spent mushroom substrate and its application in composting[D]. Hangzhou: Zhejiang University, 2017. | |
[62] |
Manu MK, Kumar R, Garg A. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum[J]. Bioresour Technol, 2017, 234:167-177.
doi: 10.1016/j.biortech.2017.03.023 URL |
[63] | 段绍君, 金浩, 毛冠华, 等. 新型复合菌种降解餐厨垃圾[J]. 环境工程学报, 2017, 11(2):1123-1130. |
Duan SJ, Jin H, Mao GH, et al. Pilot-scale experiment of new composite bacterial species to dispose restaurant garbage[J]. Chin J Environ Eng, 2017, 11(2):1123-1130. | |
[64] |
Zhao KN, Xu R, Zhang Y, et al. Development of a novel compound microbial agent for degradation of kitchen waste[J]. Braz J Microbiol, 2017, 48(3):442-450.
doi: 10.1016/j.bjm.2016.12.011 URL |
[1] | YANG Tian-jie, ZHANG Ling-xin, GU Shao-hua, PAN Zi-hao, JIANG Gao-fei, WANG Shi-mei, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Effects on Pathogen Inactivation at the Thermophilic Stage of Aerobic Composting and Its Impact Factors [J]. Biotechnology Bulletin, 2021, 37(11): 237-247. |
[2] | WANG Xiao-li, ZHANG Wen-wen, WU Qing, CAO Yun-e. Isolation,Screening and Identification of Desulfurization Bacteria from Kitchen Waste [J]. Biotechnology Bulletin, 2020, 36(8): 87-95. |
[3] | Su Xin, Li Wei, Li Wenjin,Liu Songyi, Zhang Wenkai, Qin Qianshan, Liu Xuming. Influence of Restaurant and Kitchen Waste Through The Pasteurization Treatment on The High Temperature Anaerobic#br#Digestion [J]. Biotechnology Bulletin, 2014, 0(1): 188-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||