Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (6): 53-65.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1004
Previous Articles Next Articles
ZHAO Hai-qing1,2(), LI Yun1,2, LIANG Yan-nei1,2, LIU Zhe1,2, REN Ya-lin1,2, LI Jin-juan1,2
Received:
2021-08-09
Online:
2022-06-26
Published:
2022-07-11
Contact:
LI Yun
E-mail:zhaohaiq18@163.com
ZHAO Hai-qing, LI Yun, LIANG Yan-nei, LIU Zhe, REN Ya-lin, LI Jin-juan. Advances in Research on the Effects of Joint Medication on the Drug Resistance of Aeromonas hydrophila[J]. Biotechnology Bulletin, 2022, 38(6): 53-65.
地区 Region | 样本类型 Sample type | 占气单胞菌比例 Proportion of Aeromonas/% | 耐受药物种类 Types of resistant drug | 时间 Year | 毒力基因类型 Virulence gene | 参考文献 References |
---|---|---|---|---|---|---|
中国 | 水样 | 3 | β-内酰胺类;多粘菌素类;青霉素类 | 2020 | act,aerA,alt,ascV,ast,ela,fla,hlyA,laf,lip | Meng et al. 2020[ |
胭脂鱼 | \ | 大环内酯类;林可酰胺类;青霉素类;糖肽类 | 2019 | aerA,aexT,alt,ascV,aspA,ast,hlyA,laA,lip,ompA | Li et al. 2019[ | |
埃及 | 鲻鱼 | 100 | β-内酰胺类;青霉素类 | 2018 | act,aerA,ast,hlyA | Ramadan et al. 2018[ |
罗非鱼 | 35 | 氨基糖苷类;碳青霉烯类;四环素类 | 2018 | act,aerA,alt,asa1 | Hammad et al. 2018[ | |
意大利 | 淡水鱼 | 56 | β-内酰胺类;氨基糖苷类;氯霉素类;青霉素类;大环内酯类;四环素类 | 2020 | \ | Borella et al. 2020[ |
韩国 | 乌龟 | 32 | β-内酰胺类;氯霉素类;青霉素类;四环素类;萘啶酸 | 2017 | act,alt,ast | Wimalasena et al. 2017[ |
斑马鱼 | 19 | β-内酰胺类;利福平;氯霉素类;萘啶酸;四环素类;碳青霉烯类 | 2018 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | Hossain et al. 2018[ | |
虾夷扇贝 | 41 | β-内酰胺类;氨基糖苷类;大环内酯类;喹诺酮类;氯霉素类;青霉素类;四环素类 | 2019 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | De Silva et al. 2019[ | |
孔雀鱼 | 6 | β-内酰胺类;氨基糖苷类;喹诺酮类;利福平;青霉素类;四环素类;碳青霉烯类 | 2020 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | Hossain et al. 2020[ | |
墨西哥 | 冻鱼 | 3 | β-内酰胺类;氨基糖苷类;大环内酯类;利福平;林可酰胺类;青霉素类;碳青霉烯类 | 2003 | aerA,gcat,lip,ser,β-hemol | Castro-Escarpulli et al. 2003[ |
太平洋 | 鲍鱼 | 31 | β-内酰胺类;氨基糖苷类;多肽类;利福平;萘啶酸;青霉素类;四环素类 | 2020 | aerA,act,ahyB,alt,ascV,ast,exu,fla,gcat,hlyA,lip,ser | Wickramanayake et al. 2020[ |
葡萄牙 | 水样 | 26 | β-内酰胺类;氨基糖苷类;大环内酯类;青霉素类;四环素类 | 2012 | aerA,ascV,lip,prot | Carvalho et al. 2012[ |
乌拉圭 | 水产动物 | 38 | 大环内酯类;氯霉素类;青霉素类;四环素类 | 2018 | act,alt,ast,ela,lip | Perretta et al. 2018[ |
美国 | 水样 | 22 | 四环素类;喹诺酮类 | 2014 | aerA,lip,Nucl,ser | Skwor et al. 2014[ |
Table 1 Drug resistance profile of Aeromonas hydrophila in different areas
地区 Region | 样本类型 Sample type | 占气单胞菌比例 Proportion of Aeromonas/% | 耐受药物种类 Types of resistant drug | 时间 Year | 毒力基因类型 Virulence gene | 参考文献 References |
---|---|---|---|---|---|---|
中国 | 水样 | 3 | β-内酰胺类;多粘菌素类;青霉素类 | 2020 | act,aerA,alt,ascV,ast,ela,fla,hlyA,laf,lip | Meng et al. 2020[ |
胭脂鱼 | \ | 大环内酯类;林可酰胺类;青霉素类;糖肽类 | 2019 | aerA,aexT,alt,ascV,aspA,ast,hlyA,laA,lip,ompA | Li et al. 2019[ | |
埃及 | 鲻鱼 | 100 | β-内酰胺类;青霉素类 | 2018 | act,aerA,ast,hlyA | Ramadan et al. 2018[ |
罗非鱼 | 35 | 氨基糖苷类;碳青霉烯类;四环素类 | 2018 | act,aerA,alt,asa1 | Hammad et al. 2018[ | |
意大利 | 淡水鱼 | 56 | β-内酰胺类;氨基糖苷类;氯霉素类;青霉素类;大环内酯类;四环素类 | 2020 | \ | Borella et al. 2020[ |
韩国 | 乌龟 | 32 | β-内酰胺类;氯霉素类;青霉素类;四环素类;萘啶酸 | 2017 | act,alt,ast | Wimalasena et al. 2017[ |
斑马鱼 | 19 | β-内酰胺类;利福平;氯霉素类;萘啶酸;四环素类;碳青霉烯类 | 2018 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | Hossain et al. 2018[ | |
虾夷扇贝 | 41 | β-内酰胺类;氨基糖苷类;大环内酯类;喹诺酮类;氯霉素类;青霉素类;四环素类 | 2019 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | De Silva et al. 2019[ | |
孔雀鱼 | 6 | β-内酰胺类;氨基糖苷类;喹诺酮类;利福平;青霉素类;四环素类;碳青霉烯类 | 2020 | act,aerA,ahyB,alt,ascV,ast,fla,gcat,hlyA,lip,ser | Hossain et al. 2020[ | |
墨西哥 | 冻鱼 | 3 | β-内酰胺类;氨基糖苷类;大环内酯类;利福平;林可酰胺类;青霉素类;碳青霉烯类 | 2003 | aerA,gcat,lip,ser,β-hemol | Castro-Escarpulli et al. 2003[ |
太平洋 | 鲍鱼 | 31 | β-内酰胺类;氨基糖苷类;多肽类;利福平;萘啶酸;青霉素类;四环素类 | 2020 | aerA,act,ahyB,alt,ascV,ast,exu,fla,gcat,hlyA,lip,ser | Wickramanayake et al. 2020[ |
葡萄牙 | 水样 | 26 | β-内酰胺类;氨基糖苷类;大环内酯类;青霉素类;四环素类 | 2012 | aerA,ascV,lip,prot | Carvalho et al. 2012[ |
乌拉圭 | 水产动物 | 38 | 大环内酯类;氯霉素类;青霉素类;四环素类 | 2018 | act,alt,ast,ela,lip | Perretta et al. 2018[ |
美国 | 水样 | 22 | 四环素类;喹诺酮类 | 2014 | aerA,lip,Nucl,ser | Skwor et al. 2014[ |
Fig.1 Mode of drug interaction in concentration space and application scenarios of combination therapy a:A simple geometric model of three interaction effects of DDIs. b:Application scenarios of synergy. c:Application scenarios of antagonism
[1] |
Zhang MM, Yan QP, Mao L, et al. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection[J]. Gene, 2018, 672:156-164.
doi: 10.1016/j.gene.2018.06.029 URL |
[2] |
Janda JM, Abbott SL. The genus Aeromonas:taxonomy, pathogenicity, and infection[J]. Clin Microbiol Rev, 2010, 23(1):35-73.
doi: 10.1128/CMR.00039-09 URL |
[3] |
Adeleye IA, Nwanze RO, Daniels FV, et al. Non-plasmid mediated multi-drug resistance in Vibrio and Aeromonas sp. isolated from seafoods in Lagos, Nigeria[J]. Research J Microbiology, 2011, 6(2):147-152.
doi: 10.3923/jm.2011.147.152 URL |
[4] |
Khor WC, Puah SM, Koh TH, et al. Comparison of clinical isolates of Aeromonas from Singapore and Malaysia with regard to molecular identification, virulence, and antimicrobial profiles[J]. Microb Drug Resist, 2018, 24(4):469-478.
doi: 10.1089/mdr.2017.0083 URL |
[5] |
Santos L, Ramos F. Antimicrobial resistance in aquaculture:Current knowledge and alternatives to tackle the problem[J]. Int J Antimicrob Agents, 2018, 52(2):135-143.
doi: 10.1016/j.ijantimicag.2018.03.010 URL |
[6] | 戚睿斌, 袁平, 等. 草鱼、鲤鱼源嗜水气单胞菌的分离鉴定与耐药性检测[J]. 黑龙江畜牧兽医, 2016(15):175-178, 295. |
Qi RB, Yuan P, Zhao J, et al. Isolation, identification and drug resistance of Aeromonas hydrophila from grass carp and carp[J]. Heilongjiang Animal Sci Vet Med, 2016(15):175-178, 295. | |
[7] |
Stratev D, Odeyemi OA. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources:a mini-review[J]. J Infect Public Health, 2016, 9(5):535-544.
doi: 10.1016/j.jiph.2015.10.006 URL |
[8] | Zhu W, Zhou SX, Chu WH. Comparative proteomic analysis of sensitive and multi-drug resistant Aeromonas hydrophila isolated from diseased fish[J]. Microb Pathog, 2020, 139:103930. |
[9] | Meng S, Wang YL, Liu CG, et al. Genetic diversity, antimicrobial resistance, and virulence genes of Aeromonas isolates from clinical patients, tap water systems, and food[J]. Biomed Environ Sci, 2020, 33(6):385-395. |
[10] |
Li F, Wu D, Gu HR, et al. Aeromonas hydrophila and Aeromonas veronii cause motile Aeromonas septicaemia in the cultured Chinese sucker, Myxocyprinus asiaticus[J]. Aquac Res, 2019, 50(5):1515-1526.
doi: 10.1111/are.14028 URL |
[11] |
Ramadan H, Ibrahim N, Samir M, et al. Aeromonas hydrophila from marketed mullet(Mugil cephalus)in Egypt:PCR characterization of β-lactam resistance and virulence genes[J]. J Appl Microbiol, 2018, 124(6):1629-1637.
doi: 10.1111/jam.13734 pmid: 29453863 |
[12] |
Hammad AM, Moustafa AEH, et al. Molecular and phenotypic analysis of hemolytic Aeromonas strains isolated from food in Egypt revealed clinically important multidrug resistance and virulence profiles[J]. J Food Prot, 2018, 81(6):1015-1021.
doi: 10.4315/0362-028X.JFP-17-360 URL |
[13] |
Borella L, Salogni C, Vitale N, et al. Motile aeromonads from farmed and wild freshwater fish in northern Italy:an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016[J]. Acta Vet Scand, 2020, 62(1):6.
doi: 10.1186/s13028-020-0504-y pmid: 31973764 |
[14] |
Wimalasena SHMP, Shin GW, Hossain S, et al. Potential enterotoxicity and antimicrobial resistance pattern of Aeromonas species isolated from pet turtles and their environment[J]. J Vet Med Sci, 2017, 79(5):921-926.
doi: 10.1292/jvms.16-0493 pmid: 28392536 |
[15] |
Hossain S, De Silva BCJ, Dahanayake PS, et al. Characterization of virulence properties and multi-drug resistance profiles in motile Aeromonas spp. isolated from zebrafish(Danio rerio)[J]. Lett Appl Microbiol, 2018, 67(6):598-605.
doi: 10.1111/lam.13075 pmid: 30229985 |
[16] |
de Silva BCJ, Hossain S, Dahanayake PS, et al. Aeromonas spp. from marketed Yesso scallop(Patinopecten yessoensis):molecular characterization, phylogenetic analysis, virulence properties and antimicrobial susceptibility[J]. J Appl Microbiol, 2019, 126(1):288-299.
doi: 10.1111/jam.14106 pmid: 30218592 |
[17] |
Hossain S, De Silva BCJ, Dahanayake PS, et al. Phylogenetic characteristics, virulence properties and antibiogram profile of motile Aeromonas spp. isolated from ornamental guppy(Poecilia reticulata)[J]. Arch Microbiol, 2020, 202(3):501-509.
doi: 10.1007/s00203-019-01762-5 URL |
[18] |
Castro-Escarpulli GC, Figueras MJ, Aguilera-Arreola GA, et al. Characterisation of Aeromonas spp. isolated from frozen fish intended for human consumption in Mexico[J]. Int J Food Microbiol, 2003, 84(1):41-49.
pmid: 12781953 |
[19] |
Wickramanayake MVKS, Dahanayake PS, Hossain S, et al. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone(Haliotis discus Hannai)in Korea[J]. J Appl Microbiol, 2020, 128(2):606-617.
doi: 10.1111/jam.14485 pmid: 31606917 |
[20] |
Carvalho MJ, Martínez-Murcia A, Esteves AC, et al. Phylogenetic diversity, antibiotic resistance and virulence traits of Aeromonas spp. from untreated waters for human consumption[J]. Int J Food Microbiol, 2012, 159(3):230-239.
doi: 10.1016/j.ijfoodmicro.2012.09.008 pmid: 23107502 |
[21] |
Perretta A, Antúnez K, Zunino P. Phenotypic, molecular and patho-logical characterization of motile aeromonads isolated from diseased fishes cultured in Uruguay[J]. J Fish Dis, 2018, 41(10):1559-1569.
doi: 10.1111/jfd.12864 URL |
[22] |
Skwor T, Shinko J, et al. Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin-and tetracycline-resistant Aeromonas isolates from Lake Erie[J]. Appl Environ Microbiol, 2014, 80(3):841-848.
doi: 10.1128/AEM.03645-13 URL |
[23] | 韩昊男. 水产养殖中抗生素使用存在问题及改进措施[J]. 畜牧兽医科学:电子版, 2020(15):149-150. |
Han HN. Existing problems and improving measures of using antibiotics in aquiculture[J]. Graziery Vet Sci:Electron Version, 2020(15):149-150. | |
[24] | 田佳鑫. 如何控制水产养殖抗细菌药物耐药性风险[J]. 黑龙江水产, 2020, 39(6):13-15. |
Tian JX. How to control the aquaculture antibacterial drug resistance risk[J]. Fish Heilongjiang, 2020, 39(6):13-15. | |
[25] | Vahedi A, Soltan Dallal MM, et al. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli(EPEC)and in vitro and in vivo characterization of bacteriophage[J]. FEMS Microbiol Lett, 2018, 365(16):fny136. |
[26] |
Cisek AA, Dąbrowska I, et al. Phage therapy in bacterial infections treatment:one hundred years after the discovery of bacteriophages[J]. Curr Microbiol, 2017, 74(2):277-283.
doi: 10.1007/s00284-016-1166-x URL |
[27] |
Mwangi J, Hao X, Lai R, et al. Antimicrobial peptides:new hope in the war against multidrug resistance[J]. Zool Res, 2019, 40(6):488-505.
doi: 2095-8137(2019)06-0488-18 pmid: 31592585 |
[28] |
Wu XZ, Li Z, Li XL, et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria[J]. Drug Des Devel Ther, 2017, 11:939-946.
doi: 10.2147/DDDT.S107195 URL |
[29] |
Penchovsky R, Traykovska M. Designing drugs that overcome antibacterial resistance:where do we stand and what should we do?[J]. Expert Opin Drug Discov, 2015, 10(6):631-650.
doi: 10.1517/17460441.2015.1048219 URL |
[30] |
Bollenbach T. Antimicrobial interactions:mechanisms and implications for drug discovery and resistance evolution[J]. Curr Opin Microbiol, 2015, 27:1-9.
doi: 10.1016/j.mib.2015.05.008 pmid: 26042389 |
[31] |
Cui JC, Liu YN, Wang R, et al. The mutant selection window in rabbits infected with Staphylococcus aureus[J]. J Infect Dis, 2006, 194(11):1601-1608.
doi: 10.1086/508752 URL |
[32] |
Michel JB, Yeh PJ, Chait R, et al. Drug interactions modulate the potential for evolution of resistance[J]. PNAS, 2008, 105(39):14918-14923.
doi: 10.1073/pnas.0800944105 URL |
[33] | 喻玮, 肖永红. 正确认识联合用药治疗耐药菌感染[J]. 医药导报, 2019, 38(7):835-842. |
Yu W, Xiao YH. Proper understanding on the combined medication for the therapy of resistant bacterial infection[J]. Her Med, 2019, 38(7):835-842. | |
[34] | Imamovic L, Sommer MO. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development[J]. Sci Transl Med, 2013, 5(204):204ra132. |
[35] |
Yeh PJ, Hegreness MJ, Aiden AP, et al. Drug interactions and the evolution of antibiotic resistance[J]. Nat Rev Microbiol, 2009, 7(6):460-466.
doi: 10.1038/nrmicro2133 URL |
[36] | 徐小庆, 郭璞, 王晓静, 等. 浓度加和模型与独立作用模型在化学混合物联合毒性预测方面的研究进展[J]. 动物医学进展, 2020, 41(4):91-94. |
Xu XQ, Guo P, Wang XJ, et al. Progress on CA and IA models in combined toxicity prediction of chemical mixtures[J]. Prog Vet Med, 2020, 41(4):91-94. | |
[37] |
Faust M, Altenburger R, Backhaus T, et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants[J]. Aquat Toxicol, 2001, 56(1):13-32.
pmid: 11690628 |
[38] |
Bosgra S, van der Voet H, et al. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food:an example with organophosphorus pesticides[J]. Regul Toxicol Pharmacol, 2009, 54(2):124-133.
doi: 10.1016/j.yrtph.2009.03.004 URL |
[39] | 李耘, 钱永忠, 孙秀兰, 等. 确定多种化合物联合毒性效应系数的方法:中国,CN201510083540. 5[P]. 2015-05-13. |
Li Y, Qian YZ, Sun XL, et al. A method for determining the joint toxic effect coefficient of multiple compounds:China, CN201510083540. 5[P]. 2015-05-13. | |
[40] | 邵世峰, 吴琦. 抗生素联合应用对细菌耐药突变选择窗影响的研究进展[J]. 医学综述, 2012, 18(15):2447-2449. |
Shao SF, Wu Q. Research progress in influence of combined antibiotics on mutant selection window of bacterium[J]. Med Recapitul, 2012, 18(15):2447-2449. | |
[41] |
Brochado AR, Telzerow A, Bobonis J, et al. Species-specific activity of antibacterial drug combinations[J]. Nature, 2018, 559(7713):259-263.
doi: 10.1038/s41586-018-0278-9 URL |
[42] |
Beppler C, Tekin E, White C, et al. When more is less:Emergent suppressive interactions in three-drug combinations[J]. BMC Microbiol, 2017, 17(1):107.
doi: 10.1186/s12866-017-1017-3 pmid: 28477626 |
[43] | Bergen PJ, Smith NM, Bedard TB, et al. Rational combinations of polymyxins with other antibiotics[J]. Adv Exp Med Biol, 2019, 1145:251-288. |
[44] |
Hegreness M, Shoresh N, Damian D, et al. Accelerated evolution of resistance in multidrug environments[J]. PNAS, 2008, 105(37):13977-13981.
doi: 10.1073/pnas.0805965105 pmid: 18779569 |
[45] |
Singh N, Yeh PJ. Suppressive drug combinations and their potential to combat antibiotic resistance[J]. J Antibiot:Tokyo, 2017, 70(11):1033-1042.
doi: 10.1038/ja.2017.102 URL |
[46] | Schmid A, Wolfensberger A, Nemeth J, et al. Monotherapy versus combination therapy for multidrug-resistant gram-negative infections:systematic review and meta-analysis[J]. Sci Rep, 2019, 9:15290. |
[47] | Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance[J]. Science, 2016, 351(6268):aad3292. |
[48] | Li Y, Wang JS, Li JJ, et al. An improved overall risk probability-based method for assessing the combined health risks of chemical mixtures:an example about mixture of aflatoxin B1 and microcystin LR by dietary intake[J]. Food Chem Toxicol, 2020, 146:111815. |
[49] | 任亚林, 李耘, 韩刚, 等. 水产品中嗜水气单胞菌耐药性研究进展[J]. 生物工程学报, 2019, 35(5):759-765. |
Ren YL, Li Y, Han G, et al. Research advances in drug resistance of Aeromonas hydrophila in fishery[J]. Chin J Biotechnol, 2019, 35(5):759-765. | |
[50] | 李先强. 联合用药机理分析及其评价方法研究进展[J]. 中国奶牛, 2018(7):16-21. |
Li XQ. Research progress on the mechanism of combination therapy and its evaluation methods[J]. China Dairy Cattle, 2018(7):16-21. | |
[51] |
Davies J, Davies D. Origins and evolution of antibiotic resistance[J]. Microbiol Mol Biol Rev, 2010, 74(3):417-433.
doi: 10.1128/MMBR.00016-10 URL |
[52] |
Bello-López JM, Cabrero-Martínez OA, Ibáñez-Cervantes G, et al. Horizontal gene transfer and its association with antibiotic resistance in the genus Aeromonas spp[J]. Microorganisms, 2019, 7(9):363.
doi: 10.3390/microorganisms7090363 URL |
[53] |
Pontes DS, Dantas N, et al. Genetic mechanisms of antibiotic resistance and the role of antibiotic adjuvants[J]. Curr Top Med Chem, 2018, 18(1):42-74.
doi: 10.2174/1568026618666180206095224 URL |
[54] |
Sheard DE, O’brien-Simpson NM, Wade JD, et al. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides[J]. Pure Appl Chem, 2019, 91(2):199-209.
doi: 10.1515/pac-2018-0707 |
[55] | Anes JO, McCusker MP, et al. The ins and outs of RND efflux pumps in Escherichia coli[J]. Front Microbiol, 2015, 6:587. |
[56] |
Costa SS, Viveiros M, et al. Multidrug efflux pumps in Staphyloco-ccus aureus:an update[J]. Open Microbiol J, 2013, 7:59-71.
doi: 10.2174/1874285801307010059 URL |
[57] | 刘耀川, 李凤元, 张德显, 等. 多药外排基因cmeABC的研究进展[J]. 中国预防兽医学报, 2015, 37(8):647-650. |
Liu YC, Li FY, Zhang DX, et al. Research progress of multidrug efflux gene cmeABC[J]. Chin J Prev Vet Med, 2015, 37(8):647-650. | |
[58] |
Shi XD, Chen MY, Yu ZL, et al. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC[J]. Nat Commun, 2019, 10(1):2635.
doi: 10.1038/s41467-019-10512-6 URL |
[59] |
Hernould M, Gagné S, Fournier M, et al. Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance[J]. Antimicrob Agents Chemother, 2008, 52(4):1559-1563.
doi: 10.1128/AAC.01052-07 pmid: 18268083 |
[60] | 董亚萍, 冯东岳, 孙晶, 等. 连翘酯苷A对嗜水气单胞菌耐恩诺沙星的延缓效果及其外排作用[J]. 南方农业学报, 2019, 50(1):187-193. |
Dong YP, Feng DY, Sun J, et al. Delaying effect of forsythiaside A on Aeromonas hydrophila resistance to enrofloxacin and its exocytosis[J]. J South Agric, 2019, 50(1):187-193. | |
[61] |
Wei SM, Yang YF, et al. Synergistic activity of fluoroquinolones combining with artesunate against multidrug-resistant Escherichia coli[J]. Microb Drug Resis, 2020, 26(1):81-88.
doi: 10.1089/mdr.2018.0463 URL |
[62] |
von Wintersdorff CJ, Penders J, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Front Microbiol, 2016, 7:173.
doi: 10.3389/fmicb.2016.00173 pmid: 26925045 |
[63] |
李小艳, 李泽琦, 等. 嗜水气单胞菌acrA缺失菌株的构建及其生理功能的测定[J]. 生物技术通报, 2020, 36(11):63-69.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0380 |
Li XY, Li ZQ, et al. Construction of Aeromonas hydrophila acrA deficient strain and determination of its physiological function[J]. Biotechnol Bull, 2020, 36(11):63-69. | |
[64] | 龚甜. 中药提取液抑制R质粒接合传递的体内外实验研究[D]. 南昌: 南昌大学, 2006. |
Gong T. The inhibition of conjugative R plasmid transfer by the extrat of Chinese medicinal materials in vitro and in vivo[D]. Nanchang: Nanchang University, 2006. | |
[65] |
Akasaka T, Tanaka M, Yamaguchi A, et al. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999:role of target enzyme in mechanism of fluoroquinolone resistance[J]. Antimicrob Agents Chemother, 2001, 45(8):2263-2268.
pmid: 11451683 |
[66] | 孙浩. I类整合子介导的致病性嗜水气单胞菌的耐药性分析及R质粒的初步研究[D]. 南昌: 江西农业大学, 2014. |
Sun H. The drug resistant analysis of pathogenic Aeromonas hy-drophila mediated by class I integron and preliminary study of R plasmid[D]. Nanchang: Jiangxi Agricultural University, 2014. | |
[67] |
Mun SH, Lee YS, Han SH, et al. In vitro potential effect of morin in the combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus[J]. Foodborne Pathog Dis, 2015, 12(6):545-550.
doi: 10.1089/fpd.2014.1923 URL |
[68] |
Yonath A. Antibiotics targeting ribosomes:resistance, selectivity, synergism and cellular regulation[J]. Annu Rev Biochem, 2005, 74:649-679.
pmid: 16180279 |
[69] | 王洋. 植物乳杆菌素PlnEF与乳酸对嗜水气单胞菌的协同抑制作用及机理研究[D]. 北京: 中国农业大学, 2015. |
Wang Y. Synergistic inhibition behavior and mechanism of plantaricin EF and lactic acid on Aeromonas hydrophila[D]. Beijing: China Agricultural University, 2015. | |
[70] |
Lee HH, Collins JJ. Microbial environments confound antibiotic efficacy[J]. Nat Chem Biol, 2011, 8(1):6-9.
doi: 10.1038/nchembio.740 URL |
[71] |
Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides[J]. Nature, 2011, 473(7346):216-220.
doi: 10.1038/nature10069 URL |
[72] |
Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria[J]. Cell Metab, 2015, 21(2):249-262.
doi: S1550-4131(15)00009-1 pmid: 25651179 |
[73] | 赵贤亮, 靳朝晖, 等. L-半胱氨酸提高嗜水气单胞菌对氟苯尼考的敏感性[J]. 水产学报, 2019, 43(3):671-678. |
Zhao XL, Jin ZH, et al. L-cysteine improves the susceptibility of Aeromonas hydrophila to florfenicol[J]. J Fish China, 2019, 43(3):671-678. | |
[74] |
Li Y, Liu B, Guo JJ, et al. L-Tryptophan represses persister formation via inhibiting bacterial motility and promoting antibiotics absorption[J]. Futur Microbiol, 2019, 14(9):757-771.
doi: 10.2217/fmb-2019-0051 URL |
[75] |
Duan XK, Huang X, Wang XY, et al. L-Serine potentiates fluoroquinolone activity against Escherichia coli by enhancing endogenous reactive oxygen species production[J]. J Antimicrob Chemother, 2016, 71(8):2192-2199.
doi: 10.1093/jac/dkw114 URL |
[76] |
Deng WY, Fu TW, Zhang Z, et al. L-lysine potentiates aminoglycosides against Acinetobacter baumannii via regulation of proton motive force and antibiotics uptake[J]. Emerg Microbes Infect, 2020, 9(1):639-650.
doi: 10.1080/22221751.2020.1740611 URL |
[77] |
Li WX, Yao ZJ, Sun LN, et al. Proteomics analysis reveals a potential antibiotic cocktail therapy strategy for Aeromonas hydrophila infection in biofilm[J]. J Proteome Res, 2016, 15(6):1810-1820.
doi: 10.1021/acs.jproteome.5b01127 URL |
[78] |
Yao ZJ, Sun LN, et al. Quantitative proteomics reveals antibiotics resistance function of outer membrane proteins in Aeromonas hydrophila[J]. Front Cell Infect Microbiol, 2018, 8:390.
doi: 10.3389/fcimb.2018.00390 URL |
[79] | 王洋, 王竞儒, 白东清, 等. 乳酸链球菌素与L-乳酸对嗜水气单胞菌的协同抑杀作用[J]. 食品工业科技, 2020, 41(16):81-87. |
Wang Y, Wang JR, Bai DQ, et al. Synergistic inhibitory effects of nisin and L-lactic acid against Aeromonas hydrophila[J]. Sci Technol Food Ind, 2020, 41(16):81-87. | |
[80] | Wei CF, Shien JH, Chang SK, et al. Florfenicol as a modulator enhancing antimicrobial activity:example using combination with thiamphenicol against Pasteurella multocida[J]. Front Microbiol, 2016, 7:389. |
[81] |
Ho SP, Hsu TY, Che MH, et al. Antibacterial effect of chloramphenicol, thiamphenicol and florfenicol against aquatic animal bacteria[J]. J Vet Med Sci, 2000, 62(5):479-485.
pmid: 10852395 |
[82] |
de Sousa JP, et al. Influence of carvacrol and 1, 8-cineole on cell viability, membrane integrity, and morphology of Aeromonas hydrophila cultivated in a vegetable-based broth[J]. J Food Prot, 2015, 78(2):424-429.
doi: 10.4315/0362-028X.JFP-14-242 URL |
[83] | Li XZ. Active efflux as a mechanism of resistance to antimicrobial drugs[M]// Mayers D, Sobel J, Ouellette M, et al. Antimicrobial drug resistance. Cham:Springer, 2017:131-148. |
[84] | 任亚林. 联合用药对水产品中嗜水气单胞菌耐药性的影响研究[D]. 北京: 中国农业科学院, 2020. |
Ren YL. Study on the effect of combined medication on antibiotic resistance of Aeromonas hydrophila in aquatic products[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[85] |
Wang D, Lin Z, Ding X, et al. The comparison of the combined toxicity between gram-negative and gram-positive bacteria:a case study of antibiotics and quorum-sensing inhibitors[J]. Mol Inform, 2016, 35(2):54-61.
doi: 10.1002/minf.201500061 URL |
[86] |
Yu H, Sun H, Yin C, et al. Combination of sulfonamides, silver antimicrobial agents and quorum sensing inhibitors as a preferred approach for improving antimicrobial efficacy against Bacillus subtilis[J]. Ecotoxicol Environ Saf, 2019, 181:43-48.
doi: 10.1016/j.ecoenv.2019.05.064 URL |
[87] |
Ayaz M, Ullah F, Sadiq A, et al. Synergistic interactions of phytochemicals with antimicrobial agents:Potential strategy to counteract drug resistance[J]. Chem Biol Interact, 2019, 308:294-303.
doi: 10.1016/j.cbi.2019.05.050 URL |
[88] |
Bao M, Zhang LL, Liu B, et al. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics[J]. Futur Microbiol, 2020, 15(13):1265-1276.
doi: 10.2217/fmb-2020-0001 URL |
[89] |
Bandeira Junior G, Sutili FJ, Gressler LT, et al. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria[J]. J Appl Microbiol, 2018, 125(3):655-665.
doi: 10.1111/jam.13906 pmid: 29741243 |
[90] | 卢静, 王振宁, 陈锐, 等. 几种中药单体和抗生素对嗜水气单胞菌及温和气单胞菌的体外抑菌活性研究[J]. 水生生物学报, 2013, 37(6):1128-1132. |
Lu J, Wang ZN, Chen R, et al. In vitro antibacterial activity of several Chinese medicine monomers and antibiotics on Aeromonas hydrophila and Aeromonas sobria[J]. Acta Hydrobiol Sin, 2013, 37(6):1128-1132. | |
[91] | 董亚萍. 中草药延缓嗜水气单胞菌对恩诺沙星的耐药性及其作用机制的研究[D]. 上海: 上海海洋大学, 2018. |
Dong YP. Study on Chinese herbal delaying Aeromonas hydrophila resistance on enrofloxacin and its mechanism[D]. Shanghai: Shanghai Ocean University, 2018. | |
[92] | Zhao XL, Chen H, Zhong KK, et al. Myo-inositol as an adjuvant to florfenicol against Aeromonas hydrophila infection in common carp Cyprinus carpio[J]. FEMS Microbiol Lett, 2018, 365(20):fny212. |
[93] | Deepika MS, Thangam R, Vijayakumar TS, et al. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila[J]. Microb Pathog, 2019, 135:103612. |
[94] | Prasad VGNV, Krishna BV, Swamy PL, et al. Antibacterial synergy between quercetin and polyphenolic acids against bacterial pathogens of fish[J]. Asian Pac J Trop Dis, 2014, 4:S326-S329. |
[95] | Yao ZJ, Li WX, Lin Y, et al. Proteomic analysis reveals that metabolic flows affect the susceptibility of Aeromonas hydrophila to antibiotics[J]. Sci Rep, 2016, 6:39413. |
[96] | 孟思妤, 孟长明, 陈昌福. 盐酸多西环素和烟酸诺氟沙星联合用药的离体抗菌作用(下)[J]. 科学养鱼, 2015(2):87. |
Meng SY, Meng CM, Chen CF. In vitro antibacterial activity of doxycycline hydrochloride combined with norfloxacin nicotinate[J]. Sci Fish Farming, 2015(2):87. | |
[97] | 李梅, 丁文俊, 王楚洁, 等. 联合用药缩小凡纳滨对虾斑点气单胞菌耐药突变选择窗的研究[J]. 水产学报, 2015, 39(4):566-572. |
Li M, Ding WJ, Wang CJ, et al. Narrowing mutant selection window of Aeromonas punctata from Litopenaeus vannamei by combination of antibiotics[J]. J Fish China, 2015, 39(4):566-572. | |
[98] |
Ko WC, Lee HC, Chuang YC, et al. In vitro and in vivo combinations of cefotaxime and minocycline against Aeromonas hydrophila[J]. Antimicrob Agents Chemother, 2001, 45(4):1281-1283.
pmid: 11257047 |
[99] |
Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks:a review of the top 15 major producers[J]. Rev Aquacult, 2020, 12(2):640-663.
doi: 10.1111/raq.12344 URL |
[100] |
Kabwe M, Brown T, Speirs L, et al. Novel bacteriophages capable of disrupting biofilms from clinical strains of Aeromonas hydrophila[J]. Front Microbiol, 2020, 11:194.
doi: 10.3389/fmicb.2020.00194 URL |
[101] |
Le TS, Nguyen TH, Vo HP, et al. Protective effects of bacteriophages against Aeromonas hydrophila causing Motile Aeromonas Septicemia(MAS)in striped catfish[J]. Antibiotics, 2018, 7(1):16.
doi: 10.3390/antibiotics7010016 URL |
[102] | Akter N, Hashim R, Pham HQ, et al. Lactobacillus acidophilus antimicrobial peptide is antagonistic to Aeromonas hydrophila[J]. Front Microbiol, 2020, 11:570851. |
[103] | Chen Y, Wu J, Cheng H, et al. Anti-infective effects of a fish-derived antimicrobial peptide against drug-resistant bacteria and its synergistic effects with antibiotic[J]. Front Microbiol, 2020, 11:602412. |
[104] |
Basavegowda N, Patra JK, Baek KH. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms:an overview[J]. Molecules, 2020, 25(5):1058.
doi: 10.3390/molecules25051058 URL |
[105] |
Liu J, Gefen O, Ronin I, et al. Effect of tolerance on the evolution of antibiotic resistance under drug combinations[J]. Science, 2020, 367(6474):200-204.
doi: 10.1126/science.aay3041 URL |
[106] |
Anderson JB. Evolution of antifungal-drug resistance:mechanisms and pathogen fitness[J]. Nat Rev Microbiol, 2005, 3(7):547-556.
pmid: 15953931 |
[107] |
Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections[J]. Clin Infect Dis, 2004, 38(6):864-870.
pmid: 14999632 |
[1] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[2] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[3] | JIANG Di, XU Chun-cheng. Research Progress in the Succession of Microbial Communities in Total Mixed Ration Silage [J]. Biotechnology Bulletin, 2021, 37(9): 31-38. |
[4] | ZHANG Ying-chao, YIN Shou-liang, WANG Yi-wei, WANG Xue-kai, YANG Fu-yu. Research Progress in Woody Forage Silage [J]. Biotechnology Bulletin, 2021, 37(9): 48-57. |
[5] | CHEN Jie-hao, MIAO Yu-jia, LIANG Chao, TAO Yu, OUYANG Ping, WANG Kai-yu, GENG Yi, SHI Cun-bin, LI Ning-qiu. Study on the Antibacterial Mechanism of Alpinetin Against Fish-derived Drug-resistant Aeromonas hydrophila in vitro [J]. Biotechnology Bulletin, 2021, 37(2): 103-110. |
[6] | LI Xiao-yan, LI Ze-qi, WANG Yu-qian, YU Jing, LIN Zhen-ping, LIN Xiang-min. Construction of Aeromonas hydrophila acrA Deficient Strain and Determination of Its Physiological Function [J]. Biotechnology Bulletin, 2020, 36(11): 63-69. |
[7] | LI Rui, SUN Zu-li, YANG Xian-qing, LI Lai-hao, WEI Ya, CEN Jian-wei, WANG Jing, ZHAO Yong-qiang. Advances in the Applications of Metabolomics Technologies in Aquatic Products Quality and Safety Research [J]. Biotechnology Bulletin, 2020, 36(11): 155-163. |
[8] | GAO Yun-shan, LIU Dan-dan, XU Jun-lin, SANG Yu-nong, LIANG Xia-xia, LIU Jian-xin, WANG Wen-bin. Recombinant Expression and Immunogenicity Analysis of the Porin Protein OmpF of Aeromonas hydrophila [J]. Biotechnology Bulletin, 2019, 35(9): 234-243. |
[9] | MAO Ran-ran, LI Xiao-yan, WU Yao, ZHANG Li-shan, LIN Zhen-ping, LIN Xiang-min. Cloning and Expression of Outer Membrane Protein OprM from Aeromonas hydrophila and the Evaluation of Its Immunoprotective Effect [J]. Biotechnology Bulletin, 2019, 35(9): 244-248. |
[10] | HUANG Fang, LIN Xiang-min. Construction of Mutant Strain bamA,bamB and bamD of Aeromonas hydrophila and Their Effects on the Outer Membrane Protein Transportation [J]. Biotechnology Bulletin, 2018, 34(5): 148-153. |
[11] | LIN Jin-xing1, YANG Chi1, 2, FENG Li-ping1, HU Jian-hua1. Identification of Aeromonas hydrophila and Histopathological Observation of Artificial Infected Zebrafish [J]. Biotechnology Bulletin, 2016, 32(9): 239-245. |
[12] | Huang Shiping, Zeng Youling. Research Progress on Plant Aldehyde Dehydrogenase Under Adversity Stresses [J]. Biotechnology Bulletin, 2015, 31(12): 8-14. |
[13] | Ling Kong,Ding Shihua, Jin Juan,Wu Xingzhen. Detection of Pathogenic Aeromonas hydrophila in Andrias davidianus by Quadruple PCR [J]. Biotechnology Bulletin, 2014, 0(9): 201-207. |
[14] | Li Xingchun, He Shuanghui. Research Progress of Controlling Conifer Root and Butt Rots by Phlebiopsis gigantea [J]. Biotechnology Bulletin, 2014, 0(7): 26-32. |
[15] | Li Xue, Hu Xiucai, Lan Yun, Shen Xiaojing, Lü Aijun, Zhu Aihua. Cloning and Sequence Analysis of Transcriptional Activator Protein Gene from Aeromonas hydrophila [J]. Biotechnology Bulletin, 2014, 0(7): 168-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||