Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 160-170.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1285
Previous Articles Next Articles
WANG Hui1(), MA Yi-wen2, QIAO Zheng-hao3, CHANG Yan-cai3, ZHU Kun3, DING Hai-ping3, NIE Yong-xin3(), PAN Guang-tang1()
Received:
2021-10-09
Online:
2022-07-26
Published:
2022-08-09
Contact:
NIE Yong-xin,PAN Guang-tang
E-mail:wanghui18310256976@163.com;pangt@sicau.edu.cn;nyx03@163.com
WANG Hui, MA Yi-wen, QIAO Zheng-hao, CHANG Yan-cai, ZHU Kun, DING Hai-ping, NIE Yong-xin, PAN Guang-tang. Structural and Functional Characterization of AOX Gene Family[J]. Biotechnology Bulletin, 2022, 38(7): 160-170.
引物名称Gene name | 上游引物Upstream primer(5'-3') | 下游引物Downstream primer(5'-3') |
---|---|---|
18S | CTGAGAAACGGCTACCACA | CCCAAGGTCCAACTACGAG |
Zm00001d017727qRT | TGGACCGTCAAATTACTGCG | ATGCGTTCATTCTCCGCCTC |
Zm00001d002434qRT | CTACTGGGGCATCGACACG | GCAGCGACTTGACGATCAG |
Zm00001d002435qRT | AGGGGCAGGACAAGAAGGCCG | TACGTGTCCCATGGCCTGAA |
Zm00001d002436qRT | GCTTATGTCCACGTCCTCCC | TGTACGTCTCCCATGGCCTA |
Table1 Prime Sequence
引物名称Gene name | 上游引物Upstream primer(5'-3') | 下游引物Downstream primer(5'-3') |
---|---|---|
18S | CTGAGAAACGGCTACCACA | CCCAAGGTCCAACTACGAG |
Zm00001d017727qRT | TGGACCGTCAAATTACTGCG | ATGCGTTCATTCTCCGCCTC |
Zm00001d002434qRT | CTACTGGGGCATCGACACG | GCAGCGACTTGACGATCAG |
Zm00001d002435qRT | AGGGGCAGGACAAGAAGGCCG | TACGTGTCCCATGGCCTGAA |
Zm00001d002436qRT | GCTTATGTCCACGTCCTCCC | TGTACGTCTCCCATGGCCTA |
基因ID Gene ID | 染色体编号 Chrom No. | 氨基酸长 Length/ aa | 分子质量 Molecular weight/ kD | 等电点 pI | 重力值 GRAVY | 亚细胞定位 Location |
---|---|---|---|---|---|---|
AtAOX1a_AT3G22370.1 | 3 | 354 | 39.98 | 8.56 | -0.33 | Cytoplasmic |
AtAOX1b_AT3G22360.1 | 3 | 325 | 37.43 | 8.55 | -0.35 | Cytoplasmic |
AtAOX1c_AT3G27620.1 | 3 | 329 | 37.82 | 6.91 | -0.33 | Cytoplasmic |
AtAOX1d_AT1G32350.1 | 1 | 318 | 36.20 | 8.65 | -0.29 | Cytoplasmic |
AtAOX2_AT5G64210.1 | 5 | 353 | 40.09 | 9.14 | -0.17 | Cytoplasmic |
BdAOX_KQJ84389 | 5 | 333 | 37.34 | 8.37 | -0.21 | Periplasmic |
BdAOX_KQJ84390 | 5 | 324 | 36.14 | 7.88 | -0.19 | Periplasmic |
BdAOX_KQJ84391 | 5 | 330 | 36.77 | 7.29 | -0.22 | Periplasmic |
BdAOX_KQK00893 | 3 | 394 | 43.98 | 9.37 | -0.24 | Cytoplasmic |
BdAOX_PNT69270 | 3 | 391 | 43.67 | 9.49 | -0.29 | Cytoplasmic |
GmAOX_KRH42153 | 8 | 326 | 37.12 | 8.68 | -0.32 | Cytoplasmic |
GmAOX_KRH42154 | 8 | 333 | 38.14 | 9.36 | -0.27 | Cytoplasmic |
GmAOX_KRH58272 | 5 | 317 | 36.01 | 9.01 | -0.18 | Cytoplasmic |
GmAOX_KRH62683 | 4 | 321 | 36.48 | 8.57 | -0.24 | Cytoplasmic |
OsAOX_Os02t0318100-00 | 2 | 353 | 39.46 | 9.46 | -0.17 | Periplasmic |
OsAOX_Os02t0700400-01 | 2 | 345 | 37.89 | 8.31 | -0.15 | Cytoplasmic |
OsAOX_Os04t0600200-01 | 4 | 332 | 37.14 | 7.82 | -0.12 | Cytoplasmic |
OsAOX_Os04t0600300-01 | 4 | 335 | 37.25 | 7.23 | -0.21 | Periplasmic |
SbAOX_EES05672 | 4 | 346 | 38.47 | 7.82 | -0.15 | Cytoplasmic |
SbAOX_EES12781 | 6 | 331 | 37.16 | 8.63 | -0.23 | Periplasmic |
SbAOX_EES12782 | 6 | 314 | 35.58 | 8.78 | -0.23 | Cytoplasmic |
SbAOX_EES12783 | 6 | 332 | 36.84 | 7.96 | -0.20 | Cytoplasmic |
SlAOX_Solyc01g105220.3.1 | 1 | 348 | 39.91 | 8.56 | -0.26 | Cytoplasmic |
SlAOX_Solyc08g005560.3.1 | 8 | 753 | 85.44 | 8.07 | -0.14 | Cytoplasmic |
SlAOX_Solyc08g075540.3.1 | 8 | 642 | 72.72 | 8.30 | -0.30 | Periplasmic |
StAOX_PGSC0003DMT400019707 | 8 | 321 | 36.72 | 6.76 | -0.38 | Cytoplasmic |
StAOX_PGSC0003DMT400019708 | 8 | 356 | 39.82 | 8.29 | -0.28 | Periplasmic |
StAOX_PGSC0003DMT400019709 | 8 | 355 | 39.64 | 7.75 | -0.22 | Periplasmic |
StAOX_PGSC0003DMT400019710 | 8 | 174 | 19.68 | 5.44 | 0.02 | Cytoplasmic |
StAOX_PGSC0003DMT400032705 | 1 | 353 | 40.36 | 8.45 | -0.19 | Cytoplasmic |
StAOX_PGSC0003DMT400047562 | 8 | 279 | 31.91 | 9.08 | -0.12 | Cytoplasmic |
ZmAOX_Zm00001d002434_P001 | 2 | 332 | 36.77 | 8.02 | -0.16 | Cytoplasmic |
ZmAOX_Zm00001d002435_P001 | 2 | 329 | 37.04 | 8.98 | -0.23 | Periplasmic |
ZmAOX_Zm00001d002436_P001 | 2 | 329 | 36.90 | 8.84 | -0.20 | Periplasmic |
ZmAOX_Zm00001d017727_P001 | 5 | 347 | 38.72 | 8.37 | -0.16 | Cytoplasmic |
Table 2 Identification and characteristic features of AOX gene family in eight species
基因ID Gene ID | 染色体编号 Chrom No. | 氨基酸长 Length/ aa | 分子质量 Molecular weight/ kD | 等电点 pI | 重力值 GRAVY | 亚细胞定位 Location |
---|---|---|---|---|---|---|
AtAOX1a_AT3G22370.1 | 3 | 354 | 39.98 | 8.56 | -0.33 | Cytoplasmic |
AtAOX1b_AT3G22360.1 | 3 | 325 | 37.43 | 8.55 | -0.35 | Cytoplasmic |
AtAOX1c_AT3G27620.1 | 3 | 329 | 37.82 | 6.91 | -0.33 | Cytoplasmic |
AtAOX1d_AT1G32350.1 | 1 | 318 | 36.20 | 8.65 | -0.29 | Cytoplasmic |
AtAOX2_AT5G64210.1 | 5 | 353 | 40.09 | 9.14 | -0.17 | Cytoplasmic |
BdAOX_KQJ84389 | 5 | 333 | 37.34 | 8.37 | -0.21 | Periplasmic |
BdAOX_KQJ84390 | 5 | 324 | 36.14 | 7.88 | -0.19 | Periplasmic |
BdAOX_KQJ84391 | 5 | 330 | 36.77 | 7.29 | -0.22 | Periplasmic |
BdAOX_KQK00893 | 3 | 394 | 43.98 | 9.37 | -0.24 | Cytoplasmic |
BdAOX_PNT69270 | 3 | 391 | 43.67 | 9.49 | -0.29 | Cytoplasmic |
GmAOX_KRH42153 | 8 | 326 | 37.12 | 8.68 | -0.32 | Cytoplasmic |
GmAOX_KRH42154 | 8 | 333 | 38.14 | 9.36 | -0.27 | Cytoplasmic |
GmAOX_KRH58272 | 5 | 317 | 36.01 | 9.01 | -0.18 | Cytoplasmic |
GmAOX_KRH62683 | 4 | 321 | 36.48 | 8.57 | -0.24 | Cytoplasmic |
OsAOX_Os02t0318100-00 | 2 | 353 | 39.46 | 9.46 | -0.17 | Periplasmic |
OsAOX_Os02t0700400-01 | 2 | 345 | 37.89 | 8.31 | -0.15 | Cytoplasmic |
OsAOX_Os04t0600200-01 | 4 | 332 | 37.14 | 7.82 | -0.12 | Cytoplasmic |
OsAOX_Os04t0600300-01 | 4 | 335 | 37.25 | 7.23 | -0.21 | Periplasmic |
SbAOX_EES05672 | 4 | 346 | 38.47 | 7.82 | -0.15 | Cytoplasmic |
SbAOX_EES12781 | 6 | 331 | 37.16 | 8.63 | -0.23 | Periplasmic |
SbAOX_EES12782 | 6 | 314 | 35.58 | 8.78 | -0.23 | Cytoplasmic |
SbAOX_EES12783 | 6 | 332 | 36.84 | 7.96 | -0.20 | Cytoplasmic |
SlAOX_Solyc01g105220.3.1 | 1 | 348 | 39.91 | 8.56 | -0.26 | Cytoplasmic |
SlAOX_Solyc08g005560.3.1 | 8 | 753 | 85.44 | 8.07 | -0.14 | Cytoplasmic |
SlAOX_Solyc08g075540.3.1 | 8 | 642 | 72.72 | 8.30 | -0.30 | Periplasmic |
StAOX_PGSC0003DMT400019707 | 8 | 321 | 36.72 | 6.76 | -0.38 | Cytoplasmic |
StAOX_PGSC0003DMT400019708 | 8 | 356 | 39.82 | 8.29 | -0.28 | Periplasmic |
StAOX_PGSC0003DMT400019709 | 8 | 355 | 39.64 | 7.75 | -0.22 | Periplasmic |
StAOX_PGSC0003DMT400019710 | 8 | 174 | 19.68 | 5.44 | 0.02 | Cytoplasmic |
StAOX_PGSC0003DMT400032705 | 1 | 353 | 40.36 | 8.45 | -0.19 | Cytoplasmic |
StAOX_PGSC0003DMT400047562 | 8 | 279 | 31.91 | 9.08 | -0.12 | Cytoplasmic |
ZmAOX_Zm00001d002434_P001 | 2 | 332 | 36.77 | 8.02 | -0.16 | Cytoplasmic |
ZmAOX_Zm00001d002435_P001 | 2 | 329 | 37.04 | 8.98 | -0.23 | Periplasmic |
ZmAOX_Zm00001d002436_P001 | 2 | 329 | 36.90 | 8.84 | -0.20 | Periplasmic |
ZmAOX_Zm00001d017727_P001 | 5 | 347 | 38.72 | 8.37 | -0.16 | Cytoplasmic |
Fig. 3 Collinearity of AOX genes between maize and other species (a)Arabidopsis thaliana.(b)Oryza sativa.(c)Sorghum bicolor.(d)Brachypodium distachyon.(e)Solanum lycopersicum.(f)Glycine max.(g)Solanum tuberosum
玉米AOX ZmAOXs | 染色体编号 Chrom No. | 其他物种AOX Other AOXs | 染色体编号 Chrom No. | N | S | Ka | Ks | Ka/Ks | Mya |
---|---|---|---|---|---|---|---|---|---|
ZmAOX_Zm00001d002434_P001 | 2 | SbAOX_EES12783 | 6 | 842.4 | 126.6 | 0.05 | 0.47 | 0.10 | 36.49 |
ZmAOX_Zm00001d002435_P001 | 2 | BdAOX_KQJ84390 | 5 | 824.5 | 141.5 | 0.09 | 1.86 | 0.05 | 143.31 |
ZmAOX_Zm00001d002435_P001 | 2 | OsAOX_Os04t0600300-01 | 4 | 858.2 | 128.8 | 0.10 | 0.79 | 0.13 | 60.89 |
ZmAOX_Zm00001d002435_P001 | 2 | SbAOX_EES12782 | 6 | 826 | 113 | 0.02 | 0.24 | 0.08 | 18.32 |
ZmAOX_Zm00001d002436_P001 | 2 | AtAOX1a_AT3G22370.1 | 3 | 729.6 | 248.4 | 0.20 | 65.03 | 0.00 | 5 002.48 |
ZmAOX_Zm00001d002436_P001 | 2 | BdAOX_KQJ84389 | 5 | 839.3 | 147.7 | 0.09 | 1.09 | 0.09 | 84.08 |
ZmAOX_Zm00001d002436_P001 | 2 | GmAOX_KRH62683 | 4 | 738.7 | 218.3 | 0.21 | 72.34 | 0.00 | 5 564.66 |
ZmAOX_Zm00001d002436_P001 | 2 | OsAOX_Os04t0600200-01 | 4 | 838.9 | 139.1 | 0.08 | 1.12 | 0.07 | 86.45 |
ZmAOX_Zm00001d002436_P001 | 2 | SbAOX_EES12781 | 6 | 850.2 | 136.8 | 0.01 | 0.29 | 0.03 | 22.22 |
ZmAOX_Zm00001d002436_P001 | 2 | SlAOX_Solyc01g105220.3.1 | 1 | 747.2 | 230.8 | 0.26 | 23.83 | 0.01 | 1 832.88 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_KQK00893 | 3 | 856.1 | 157.9 | 0.08 | 1.44 | 0.06 | 110.84 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_PNT69270 | 3 | 848.1 | 156.9 | 0.11 | 1.85 | 0.06 | 142.36 |
ZmAOX_Zm00001d017727_P001 | 5 | GmAOX_KRH62683 | 4 | 727.2 | 226.8 | 0.21 | 24.26 | 0.01 | 1 866.37 |
ZmAOX_Zm00001d017727_P001 | 5 | OsAOX_Os02t0700400-01 | 2 | 864.9 | 161.1 | 0.10 | 1.45 | 0.07 | 111.63 |
ZmAOX_Zm00001d017727_P001 | 5 | SbAOX_EES05672 | 4 | 865.8 | 169.2 | 0.02 | 0.22 | 0.08 | 16.71 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019708 | 8 | 760.2 | 262.8 | 0.28 | 25.43 | 0.01 | 1 955.81 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019709 | 8 | 752.6 | 261.4 | 0.32 | 15.51 | 0.02 | 1 193.40 |
Table 3 Ka/Ks for orthologous AOX proteins between Z. mays and other seven species
玉米AOX ZmAOXs | 染色体编号 Chrom No. | 其他物种AOX Other AOXs | 染色体编号 Chrom No. | N | S | Ka | Ks | Ka/Ks | Mya |
---|---|---|---|---|---|---|---|---|---|
ZmAOX_Zm00001d002434_P001 | 2 | SbAOX_EES12783 | 6 | 842.4 | 126.6 | 0.05 | 0.47 | 0.10 | 36.49 |
ZmAOX_Zm00001d002435_P001 | 2 | BdAOX_KQJ84390 | 5 | 824.5 | 141.5 | 0.09 | 1.86 | 0.05 | 143.31 |
ZmAOX_Zm00001d002435_P001 | 2 | OsAOX_Os04t0600300-01 | 4 | 858.2 | 128.8 | 0.10 | 0.79 | 0.13 | 60.89 |
ZmAOX_Zm00001d002435_P001 | 2 | SbAOX_EES12782 | 6 | 826 | 113 | 0.02 | 0.24 | 0.08 | 18.32 |
ZmAOX_Zm00001d002436_P001 | 2 | AtAOX1a_AT3G22370.1 | 3 | 729.6 | 248.4 | 0.20 | 65.03 | 0.00 | 5 002.48 |
ZmAOX_Zm00001d002436_P001 | 2 | BdAOX_KQJ84389 | 5 | 839.3 | 147.7 | 0.09 | 1.09 | 0.09 | 84.08 |
ZmAOX_Zm00001d002436_P001 | 2 | GmAOX_KRH62683 | 4 | 738.7 | 218.3 | 0.21 | 72.34 | 0.00 | 5 564.66 |
ZmAOX_Zm00001d002436_P001 | 2 | OsAOX_Os04t0600200-01 | 4 | 838.9 | 139.1 | 0.08 | 1.12 | 0.07 | 86.45 |
ZmAOX_Zm00001d002436_P001 | 2 | SbAOX_EES12781 | 6 | 850.2 | 136.8 | 0.01 | 0.29 | 0.03 | 22.22 |
ZmAOX_Zm00001d002436_P001 | 2 | SlAOX_Solyc01g105220.3.1 | 1 | 747.2 | 230.8 | 0.26 | 23.83 | 0.01 | 1 832.88 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_KQK00893 | 3 | 856.1 | 157.9 | 0.08 | 1.44 | 0.06 | 110.84 |
ZmAOX_Zm00001d017727_P001 | 5 | BdAOX_PNT69270 | 3 | 848.1 | 156.9 | 0.11 | 1.85 | 0.06 | 142.36 |
ZmAOX_Zm00001d017727_P001 | 5 | GmAOX_KRH62683 | 4 | 727.2 | 226.8 | 0.21 | 24.26 | 0.01 | 1 866.37 |
ZmAOX_Zm00001d017727_P001 | 5 | OsAOX_Os02t0700400-01 | 2 | 864.9 | 161.1 | 0.10 | 1.45 | 0.07 | 111.63 |
ZmAOX_Zm00001d017727_P001 | 5 | SbAOX_EES05672 | 4 | 865.8 | 169.2 | 0.02 | 0.22 | 0.08 | 16.71 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019708 | 8 | 760.2 | 262.8 | 0.28 | 25.43 | 0.01 | 1 955.81 |
ZmAOX_Zm00001d017727_P001 | 5 | StAOX_PGSC0003DMT400019709 | 8 | 752.6 | 261.4 | 0.32 | 15.51 | 0.02 | 1 193.40 |
miRNA 序号 miRNA accession | 靶基因ID Target accession | E值 Expectation | 抑制作用 Inhibition | miRNA起始 miRNA start | miRNA终止 miRNA end | 基因起始 Target start | 基因终止 Target end |
---|---|---|---|---|---|---|---|
ath-miR5021 | AtAOX1c_AT3G27620.1 | 2.5 | Cleavage | 1 | 20 | 6 | 25 |
bdi-miR5175a | BdAOX_KQK00893 | 3 | Translation | 1 | 21 | 1 686 | 1 706 |
bdi-miR5175a | BdAOX_PNT69270 | 3 | Translation | 1 | 21 | 1 671 | 1 691 |
gma-miR1507a | GmAOX_KRH62683 | 3.5 | Translation | 1 | 22 | 370 | 391 |
sbi-miR6220-5p | SbAOX_EES12782 | 0.5 | Cleavage | 1 | 24 | 1 558 | 1 581 |
sly-miR319a | SlAOX_Solyc08g005560.3.1 | 3.5 | Cleavage | 1 | 20 | 1 172 | 1 191 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019708 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019709 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019710 | 3.5 | Translation | 1 | 21 | 132 | 152 |
stu-miR7981-3p | StAOX_PGSC0003DMT400032705 | 3.5 | Translation | 1 | 24 | 1 394 | 1 417 |
zma-miR395c-3p | ZmAOX_Zm00001d002435_P001 | 2.5 | Cleavage | 1 | 21 | 78 | 98 |
Table 4 List of putative miRNAs targeted AOX genes identified by psRNATarget online tool
miRNA 序号 miRNA accession | 靶基因ID Target accession | E值 Expectation | 抑制作用 Inhibition | miRNA起始 miRNA start | miRNA终止 miRNA end | 基因起始 Target start | 基因终止 Target end |
---|---|---|---|---|---|---|---|
ath-miR5021 | AtAOX1c_AT3G27620.1 | 2.5 | Cleavage | 1 | 20 | 6 | 25 |
bdi-miR5175a | BdAOX_KQK00893 | 3 | Translation | 1 | 21 | 1 686 | 1 706 |
bdi-miR5175a | BdAOX_PNT69270 | 3 | Translation | 1 | 21 | 1 671 | 1 691 |
gma-miR1507a | GmAOX_KRH62683 | 3.5 | Translation | 1 | 22 | 370 | 391 |
sbi-miR6220-5p | SbAOX_EES12782 | 0.5 | Cleavage | 1 | 24 | 1 558 | 1 581 |
sly-miR319a | SlAOX_Solyc08g005560.3.1 | 3.5 | Cleavage | 1 | 20 | 1 172 | 1 191 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019708 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019709 | 3.5 | Translation | 1 | 21 | 760 | 780 |
stu-miR319a-5p | StAOX_PGSC0003DMT400019710 | 3.5 | Translation | 1 | 21 | 132 | 152 |
stu-miR7981-3p | StAOX_PGSC0003DMT400032705 | 3.5 | Translation | 1 | 24 | 1 394 | 1 417 |
zma-miR395c-3p | ZmAOX_Zm00001d002435_P001 | 2.5 | Cleavage | 1 | 21 | 78 | 98 |
[1] | Moore AL, Siedow JN. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria[J]. Biochim et Biophys Acta BBA Bioenerg, 1991, 1059(2):121-140. |
[2] | 李严曼. 西瓜线粒体交替氧化酶基因的克隆及交替呼吸途径对西瓜低温抗性的调控[D]. 杭州: 浙江大学, 2011. |
Li YM. Cloning of watermelon mitochondrial alternative oxidase gene and regulation of alternative respiratory pathway on watermelon resistance to low temperature[D]. Hangzhou: Zhejiang University, 2011. | |
[3] |
Gomes CM, Le Gall J, Xavier AV, et al. Could a diiron-containing four-helix-bundle protein have been a primitive oxygen reductase?[J]. Chembiochem, 2001, 2(7/8):583-587.
doi: 10.1002/1439-7633(20010803)2:7/8<583::AID-CBIC583>3.0.CO;2-5 URL |
[4] |
McDonald AE, Vanlerberghe GC. Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase[J]. Comp Biochem Physiol Part D Genomics Proteomics, 2006, 1(3):357-364.
doi: 10.1016/j.cbd.2006.08.001 pmid: 20483267 |
[5] |
Finnegan PM, Umbach AL, Wilce JA. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes[J]. FEBS Lett, 2003, 555(3):425-430.
pmid: 14675750 |
[6] | Nobre T, Campos MD, Lucic-Mercy E, et al. Misannotation awareness:a tale of two gene-groups[J]. Front Plant Sci, 2016, 7:868. |
[7] |
Suzuki T, Hashimoto T, Yabu Y, et al. Alternative oxidase(AOX)genes of African trypanosomes:phylogeny and evolution of AOX and plastid terminal oxidase families[J]. J Eukaryot Microbiol, 2005, 52(4):374-381.
doi: 10.1111/j.1550-7408.2005.00050.x URL |
[8] |
MacKenzie S, McIntosh L. Higher plant mitochondria[J]. Plant Cell, 1999, 11(4):571-585.
doi: 10.1105/tpc.11.4.571 URL |
[9] |
Moore AL, Albury MS, Crichton PG, et al. Function of the alternative oxidase:is it still a scavenger?[J]. Trends Plant Sci, 2002, 7(11):478-481.
doi: 10.1016/S1360-1385(02)02366-X URL |
[10] |
Vanlerberghe GC. Alternative oxidase:a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants[J]. Int J Mol Sci, 2013, 14(4):6805-6847.
doi: 10.3390/ijms14046805 pmid: 23531539 |
[11] | Wanniarachchi VR, Dametto L, Sweetman C, et al. Alternative respiratory pathway component genes(AOX and ND)in rice and barley and their response to stress[J]. Int J Mol Sci, 2018, 19(3):E915. |
[12] |
Wang H, Huang J, Liang X, et al. Involvement of hydrogen peroxide, calcium, and ethylene in the induction of the alternative pathway in chilling-stressed Arabidopsis callus[J]. Planta, 2012, 235(1):53-67.
doi: 10.1007/s00425-011-1488-7 URL |
[13] |
Panda SK, Sahoo L, Katsuhara M, et al. Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells[J]. Mol Biotechnol, 2013, 54(2):551-563.
doi: 10.1007/s12033-012-9595-7 URL |
[14] |
Prado C, Rodríguez-Montelongo L, González JA, et al. Uptake of chromium by Salvinia minima:effect on plant growth, leaf respiration and carbohydrate metabolism[J]. J Hazard Mater, 2010, 177(1/2/3):546-553.
doi: 10.1016/j.jhazmat.2009.12.067 URL |
[15] |
Keunen E, Schellingen K, Van Der Straeten D, et al. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves[J]. J Exp Bot, 2015, 66(10):2967-2977.
doi: 10.1093/jxb/erv035 pmid: 25743159 |
[16] |
Liao YW, Liu YR, Liang JY, et al. The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus[J]. Planta, 2015, 241(3):641-650.
doi: 10.1007/s00425-014-2207-y URL |
[17] |
Vanlerberghe GC, Martyn GD, Dahal K. Alternative oxidase:a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress[J]. Physiol Plant, 2016, 157(3):322-337.
doi: 10.1111/ppl.12451 pmid: 27080742 |
[18] |
Del-Saz NF, Florez-Sarasa I, Clemente-Moreno MJ, et al. Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress[J]. Plant Cell Environ, 2016, 39(11):2361-2369.
doi: 10.1111/pce.12776 URL |
[19] |
Murik O, Tirichine L, Prihoda J, et al. Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom[J]. New Phytol, 2019, 221(3):1303-1316.
doi: 10.1111/nph.15479 pmid: 30216452 |
[20] |
Hao J, Li X, Xu G, et al. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense[J]. Food Chem, 2019, 286:329-337.
doi: 10.1016/j.foodchem.2019.02.027 URL |
[21] |
Vicentini TM, Cavalheiro AH, Dechandt CRP, et al. Aluminum directly inhibits alternative oxidase pathway and changes metabolic and redox parameters on Jatropha curcas cell culture[J]. Plant Physiol Biochem, 2019, 136:92-97.
doi: 10.1016/j.plaphy.2019.01.012 URL |
[22] |
Ostroukhova M, Zalutskaya Z, Ermilova E. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii[J]. Eur J Protistol, 2017, 58:1-8.
doi: S0932-4739(16)30157-2 pmid: 28088729 |
[23] | 赵晓宇, 孙立娇, 郎绍裕, 等. 植物呼吸作用关键基因交替氧化酶的研究进展[J]. 北方园艺, 2020(14):144-150. |
Zhao XY, Sun LJ, Lang SY, et al. Research progress on AOX playing a key gene of plant respiration[J]. North Hortic, 2020(14):144-150. | |
[24] | 王振华, 刘文国, 高世斌, 等. 玉米种业的昨天、今天和明天[J]. 中国畜牧业, 2021(19):26-32. |
Wang ZH, Liu WG, Gao SB, et al. Past, now and future of corn seed industry[J]. China Animal Ind, 2021(19):26-32. | |
[25] | 赵晓宇. 欧李ChAOX2基因参与抗盐功能的初步研究[D]. 哈尔滨: 东北林业大学, 2020. |
Zhao XY. The preliminary study in the function of ChAOX2 gene on salt resistance in Cerasus humilis[D]. Harbin: Northeast Forestry University, 2020. | |
[26] |
Kim JY, Lee HJ, Jung HJ, et al. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions[J]. Planta, 2010, 232(6):1447-1454.
doi: 10.1007/s00425-010-1267-x URL |
[27] |
Fiorani F, Umbach AL, Siedow JN. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants[J]. Plant Physiol, 2005, 139(4):1795-1805.
pmid: 16299170 |
[28] | Kong J, Gong JM, Zhang ZG, et al. A new AOX homologous gene OsIM1 from rice(Oryza sativa L.)with an alternative splicing mechanism under salt stress[J]. Theor Appl Genet, 2003, 107(2):326-331. |
[29] |
Millar H, Considine MJ, Day DA, et al. Unraveling the role of mitochondria during oxidative stress in plants[J]. IUBMB Life, 2001, 51(4):201-205.
pmid: 11569913 |
[30] |
Umbach AL, Fiorani F, Siedow JN. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue[J]. Plant Physiol, 2005, 139(4):1806-1820.
pmid: 16299171 |
[31] | Purvis AC. Role of the alternative oxidase in limiting superoxide production by plant mitochondria[J]. Physiol Plant, 1997, 100(1):165-170. |
[32] |
Ding CQ, Ng S, Wang L, et al. Genome-wide identification and characterization of ALTERNATIVE OXIDASE genes and their response under abiotic stresses in Camellia sinensis(L.)O. Kuntze[J]. Planta, 2018, 248(5):1231-1247.
doi: 10.1007/s00425-018-2974-y URL |
[1] | SUN Ming-hui, WU Qiong, LIU Dan-dan, JIAO Xiao-yu, WANG Wen-jie. Cloning and Expression Analysis of CsTMFs Gene in Tea Plant [J]. Biotechnology Bulletin, 2023, 39(7): 151-159. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[4] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[5] | JIANG Qing-chun, DU Jie, WANG Jia-cheng, YU Zhi-he, WANG Yun, LIU Zhong-yu. Expression and Function Analysis of Transcription Factor PcMYB2 from Polygonum cuspidatum [J]. Biotechnology Bulletin, 2023, 39(5): 217-223. |
[6] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[7] | YAO Zi-ting, CAO Xue-ying, XIAO Xue, LI Rui-fang, WEI Xiao-mei, ZOU Cheng-wu, ZHU Gui-ning. Screening of Reference Genes for RT-qPCR in Neoscytalidium dimidiatum [J]. Biotechnology Bulletin, 2023, 39(5): 92-102. |
[8] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[9] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[10] | LIU Si-jia, WANG Hao-nan, FU Yu-chen, YAN Wen-xin, HU Zeng-hui, LENG Ping-sheng. Cloning and Functional Analysis of LiCMK Gene in Lilium ‘Siberia’ [J]. Biotechnology Bulletin, 2023, 39(3): 196-205. |
[11] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[12] | PANG Qiang-qiang, SUN Xiao-dong, ZHOU Man, CAI Xing-lai, ZHANG Wen, WANG Ya-qiang. Cloning of BrHsfA3 in Chinese Flowering Cabbage and Its Responses to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(2): 107-115. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[15] | CHENG Shuang, ULAANDUU Namuun, LI Zhuo-lin, HU Hai-ling, DENG Xiao-xia, LI Yue-ming, WANG Jing-hong, LIN Ji-xiang. Research Progress in the Mechanism of Plant Photosystem II(PSII)Responsing to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(12): 33-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||