Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 171-177.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1294
Previous Articles Next Articles
ZHOU Shi-chen1(), YI Zhi-ben2, WANG Xin-yi1, YANG Xiao-ying1, SUN Li-na1, LUAN Wei-jiang1(), LIANG Shan-shan1()
Received:
2021-10-13
Online:
2022-07-26
Published:
2022-08-09
Contact:
LUAN Wei-jiang,LIANG Shan-shan
E-mail:zschena@163.com;skylss@tjnu.edu.cn;skylwj@tjnu.edu.cn
ZHOU Shi-chen, YI Zhi-ben, WANG Xin-yi, YANG Xiao-ying, SUN Li-na, LUAN Wei-jiang, LIANG Shan-shan. Genetic Analysis and Gene Mapping of Sorghum Double-grain Mutant Dgs[J]. Biotechnology Bulletin, 2022, 38(7): 171-177.
Fig.1 Phenotype of the floret and grain of wild-type S. bicolor Jin 5 and mutant Dgs A:Flower of wild-type S. bicolor Jin 5. B:Flower of mutant Dgs. C:Grain of wild-type S. bicolor Jin 5. D:Grain of mutant Dgs
杂交组合 Cross | 双粒单株个体数 Number of double-grain individuals | 单粒单株个体数 Number of single-grain individuals | 总数 Total | χ2(3∶1) | P |
---|---|---|---|---|---|
晋梁5号 × 双粒突变体 S. bicolor Jin 5 × Dgs | 313 | 117 | 430 | 1.119 | 0.290 |
Table 1 Statistical analysis of phenotype of F2 population from S. bicolor Jin 5×Dgs
杂交组合 Cross | 双粒单株个体数 Number of double-grain individuals | 单粒单株个体数 Number of single-grain individuals | 总数 Total | χ2(3∶1) | P |
---|---|---|---|---|---|
晋梁5号 × 双粒突变体 S. bicolor Jin 5 × Dgs | 313 | 117 | 430 | 1.119 | 0.290 |
样品 Sample | 初始测序reads数目 Raw reads | 过滤后的reads数 Clean reads | 过滤后碱基数 Clean base | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|---|
双粒突变体 Dgs | 39 005 403 | 38 995 403 | 11 679 957 024 | 97.83 | 93.6 | 43.28 |
晋粱5号 Jin5 | 38 666 782 | 38 656 413 | 11 579 578 194 | 97.74 | 93.44 | 43.86 |
单粒混池/ Single-grain bulk(S bulk) | 148 822 039 | 148 768 510 | 44 563 912 284 | 97.61 | 93.15 | 43.25 |
双粒混池/ Double-grain bulk(D bulk) | 156 721 594 | 156 668 065 | 46 930 613 822 | 97.58 | 93.26 | 43.67 |
Table 2 Statistics from the qualities of the sequencing
样品 Sample | 初始测序reads数目 Raw reads | 过滤后的reads数 Clean reads | 过滤后碱基数 Clean base | Q20/% | Q30/% | GC含量 GC content/% |
---|---|---|---|---|---|---|
双粒突变体 Dgs | 39 005 403 | 38 995 403 | 11 679 957 024 | 97.83 | 93.6 | 43.28 |
晋粱5号 Jin5 | 38 666 782 | 38 656 413 | 11 579 578 194 | 97.74 | 93.44 | 43.86 |
单粒混池/ Single-grain bulk(S bulk) | 148 822 039 | 148 768 510 | 44 563 912 284 | 97.61 | 93.15 | 43.25 |
双粒混池/ Double-grain bulk(D bulk) | 156 721 594 | 156 668 065 | 46 930 613 822 | 97.58 | 93.26 | 43.67 |
Fig. 3 PCR agarose gel electrophoresis of partial F2 reces-sive individuals A:Marker detection of InDel2930. B:Marker detection of InDel6958. M:Parent of the double-grain mutant Dgs. WT:Parent of Jin 5. 1-22:Single-seed individuals in F2 generation. ▲:Recombinant line
标记名称 Maker | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Indel2930 | CGACGCCGGGATTTCCATTT | TTGGTCCACATCCGAGCAGG |
Indel6958 | ATTTACGGGTAGCGAGCACT | GGCCGTATCCTCAATCCTGT |
SSR7060 | GCACACCACCGAGTCAGC | CTCCTCCACCTGCAGCAT |
SSR1018 | ACCTGTAAATTCCATGCATCGT | CAGAAGGTCAACTGTTTCTCCC |
SSR2629 | CAAATAACAGCCCCCAAAGG | CTGCTAAGGCGTGCTTTATT |
SSR9952 | CGCAAATGACGAGTCTTGGT | AGTCGGATCTGATCTAATCGCA |
SSR8023 | GTGTACGTGACGCGGTGAAA | GTCGTCTCCCTGGTATGTATGG |
Table 3 Information of primers used for linkage analysis of Dgs
标记名称 Maker | 正向引物 Forward primer(5'-3') | 反向引物 Reverse primer(5'-3') |
---|---|---|
Indel2930 | CGACGCCGGGATTTCCATTT | TTGGTCCACATCCGAGCAGG |
Indel6958 | ATTTACGGGTAGCGAGCACT | GGCCGTATCCTCAATCCTGT |
SSR7060 | GCACACCACCGAGTCAGC | CTCCTCCACCTGCAGCAT |
SSR1018 | ACCTGTAAATTCCATGCATCGT | CAGAAGGTCAACTGTTTCTCCC |
SSR2629 | CAAATAACAGCCCCCAAAGG | CTGCTAAGGCGTGCTTTATT |
SSR9952 | CGCAAATGACGAGTCTTGGT | AGTCGGATCTGATCTAATCGCA |
SSR8023 | GTGTACGTGACGCGGTGAAA | GTCGTCTCCCTGGTATGTATGG |
[1] |
Takanashi H, Shichijo M, Sakamoto L, et al. Genetic dissection of QTLs associated with spikelet-related traits and grain size in Sorghum[J]. Sci Rep, 2021, 11(1):9398.
doi: 10.1038/s41598-021-88917-x pmid: 33931706 |
[2] |
Burow G, Xin ZG, Hayes C, et al. Characterization of a multiseeded(msd1)mutant of Sorghum for increasing grain yield[J]. Crop Sci, 2014, 54(5):2030-2037.
doi: 10.2135/cropsci2013.08.0566 URL |
[3] |
Nagasawa N, Miyoshi M, Kitano H, et al. Mutations associated with floral organ number in rice[J]. Planta, 1996, 198(4):627-633.
doi: 10.1007/BF00262651 URL |
[4] |
Suzaki T, Sato M, Ashikari M, et al. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to ArabidopsisCLAVATA1[J]. Development, 2004, 131(22):5649-5657.
doi: 10.1242/dev.01441 URL |
[5] |
Suzaki T, Toriba T, Fujimoto M, et al. Conservation and diversification of meristem maintenance mechanism in Oryza sativa:Function of the FLORAL ORGAN NUMBER2 gene[J]. Plant Cell Physiol, 2006, 47(12):1591-1602.
doi: 10.1093/pcp/pcl025 URL |
[6] |
Chu HW, Qian Q, Liang WQ, et al. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice[J]. Plant Physiol, 2006, 142(3):1039-1052.
doi: 10.1104/pp.106.086736 URL |
[7] |
Jiang L, Qian Q, Mao L, et al. Characterization of the rice floral organ number mutant fon3[J]. J Integr Plant Biol, 2005, 47(1):100-106.
doi: 10.1111/j.1744-7909.2005.00017.x URL |
[8] |
Jiang L, Zhang WL, Xia ZH, et al. A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L[J]. Mol Genet Genom, 2007, 277(3):263-272.
doi: 10.1007/s00438-006-0196-7 URL |
[9] | 张向前, 邹金松, 朱海涛, 等. 水稻早熟多子房突变体fon5的遗传分析和基因定位[J]. 遗传, 2008, 30(10):1349-1355. |
Zhang XQ, Zou JS, Zhu HT, et al. Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice(Oryza sativa L.)[J]. Hereditas, 2008, 30(10):1349-1355. | |
[10] |
罗伟雄, 李明, 陈军, 等. 一个新的水稻花器官突变体的鉴定和基因定位[J]. 植物学报, 2011, 46(5):506-513.
doi: 10.3724/SP.J.1259.2011.00506 |
Luo WX, Li M, Chen J, et al. Characterization and gene mapping of a novel mutant in rice floral organs[J]. Chin Bull Bot, 2011, 46(5):506-513. | |
[11] | Cron AB. Triple-seeded spikelets in sorghum[J]. Agronj, 1916, 8(4):237-238. |
[12] |
Karper RE. Floral abnormalities in sorghum[J]. J Hered, 1936, 27(5):183-194.
doi: 10.1093/oxfordjournals.jhered.a104204 URL |
[13] |
Jiao Y, Lee YK, Gladman N, et al. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway[J]. Nat Commun, 2018, 9(1):822.
doi: 10.1038/s41467-018-03238-4 URL |
[14] |
Gladman N, Jiao YP, Lee YK, et al. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module[J]. Int J Mol Sci, 2019, 20(19):4951.
doi: 10.3390/ijms20194951 URL |
[15] |
Casady AJ, Ross WM. Effect of the twin-seeded character on sorghum performance[J]. Crop Sci, 1977, 17(1):117-120.
doi: 10.2135/cropsci1977.0011183X001700010032x URL |
[16] | 梁小红, 仪治本, 张振刚, 等. 高粱TW960双粒结实特性的遗传分析[J]. 国外农学-杂粮作物, 1999, 19(3):51. |
Liang XH, Yi ZB, Zhang ZG, et al. Genetic analysis of double grain setting characteristics in Sorghum TW960[J]. Coarse Drain Crops, 1999(3):51. | |
[17] | 刘明慧, 高秋霞. 复粒小穗高粱种质资源结构及遗传分析[J]. 中国农业科学, 2007, 40(3):628-632. |
Liu MH, Gao QX. Genetic analysis of multiple grain sorghum germ plasm and spikelet structure anatomical analysis[J]. Sci Agric Sin, 2007, 40(3):628-632. | |
[18] |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5):589-595.
doi: 10.1093/bioinformatics/btp698 URL |
[19] |
McCormick RF, Truong SK, Sreedasyam A, et al. The Sorghum bicolor reference genome:improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization[J]. Plant J, 2018, 93(2):338-354.
doi: 10.1111/tpj.13781 URL |
[20] |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 URL |
[21] |
Mansfeld BN, Grumet R. QTLseqr:an R package for bulk segregant analysis with next-generation sequencing[J]. Plant Genome, 2018, 11(2). DOI: 10.3835/plantgenome2018.01.0006.
doi: 10.3835/plantgenome2018.01.0006 |
[22] |
Albert AV, Kavaĭ-ool UN, Ezhova TA. Gene NANA regulates cell proliferation in Arabidopsis thaliana shoot apical meristem without interaction with CLV1, CLV2, CLV3[J]. Russian Journal of Developmental Biology, 2014, 45(5):267-272.
doi: 10.1134/S1062360414050026 URL |
[23] |
Li Y, Xu PZ, Zhang HY, et al. Characterization and identification of a novel mutant fon(t) on floral organ number and floral organ identity in rice[J]. J Genet Genom, 2007, 34(8):730-737.
doi: 10.1016/S1673-8527(07)60082-4 URL |
[24] |
Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity:20 years of ABCs[J]. Semin Cell Dev Biol, 2010, 21(1):73-79.
doi: 10.1016/j.semcdb.2009.10.005 pmid: 19883777 |
[25] |
Xiao H, Wang Y, Liu D, et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference[J]. Plant Mol Biol, 2003, 52(5):957-966.
pmid: 14558657 |
[26] |
Wu HM, Xie DJ, Tang ZS, et al. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J]. Plant Biotechnol J, 2020, 18(8):1778-1795.
doi: 10.1111/pbi.13340 URL |
[27] |
王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6):1149-1158.
doi: 10.3969/j.issn.1004-1524.2021.06.21 |
Wang Y, Mu YX, Wang J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agric Zhejiangensis, 2021, 33(6):1149-1158. |
[1] | WANG Teng-hui, GE Wen-dong, LUO Ya-fang, FAN Zhen-yu, WANG Yu-shu. Gene Mapping of Kale White Leaves Based on Whole Genome Re-sequencing of Extreme Mixed Pool(BSA) [J]. Biotechnology Bulletin, 2023, 39(9): 176-182. |
[2] | FAN Xin-qi, WANG Hai-yan, CHEN Jing, ZHANG Xiao-juan, GUO Qi, LIANG Du, ZHOU Fu-ping, NIE Meng-en, ZHANG Yi-zhong, LIU Qing-shan. Effects of EMS Mutagenesis on the Seeding Survival and Major Agronomic Traits of Sorghum in M1 Generation [J]. Biotechnology Bulletin, 2023, 39(7): 173-184. |
[3] | XU Jian-xia, DING Yan-qing, FENG Zhou, CAO Ning, CHENG Bin, GAO Xu, ZOU Gui-hua, ZHANG Li-yi. QTL Mapping of Sorghum Plant Height and Internode Numbers Based on Super-GBS Technique [J]. Biotechnology Bulletin, 2023, 39(7): 185-194. |
[4] | KONG De-zhen, DUAN Zhen-yu, WANG Gang, ZHANG Xin, XI Lin-qiao. Physiological Characteristics and Transcriptome Analysis of Sorghum bicolor × S. Sudanense Seedlings Under Salt-alkali Stress [J]. Biotechnology Bulletin, 2023, 39(6): 199-207. |
[5] | WANG Chun-yu, LI Zheng-jun, WANG Ping, ZHANG Li-xia. Physiological and Biochemical Analysis of Drought Resistance in Sorghum Cuticular Wax-deficient Mutant sb1 [J]. Biotechnology Bulletin, 2023, 39(5): 160-167. |
[6] | JIANG Bai-yang, BAI Wen-bin, ZHANG Jiang-hua, FAN Na, SHI Li-juan. Advances in Studies on Identification Methods and Molecular Biology of Drought Resistance in Sorghum [J]. Biotechnology Bulletin, 2021, 37(4): 260-272. |
[7] | ZHANG Yi-zhong, FAN Xin-qi, YANG Hui-yong, ZHANG Xiao-juan, SHAO Qiang, LIANG Du, GUO Qi, LIU Qing-shan, DU Wei-jun. Genetic Relationship Analysis of Sorghum Breeding Materials Based on Simplified Genome Sequencing [J]. Biotechnology Bulletin, 2020, 36(12): 21-33. |
[8] | ZHANG Dan, WANG Nan, LI Chao, XIE Qi, TANG San-yuan. Sweet Sorghum—a High Efficient and Quality Forage Crop [J]. Biotechnology Bulletin, 2019, 35(5): 2-8. |
[9] | LENG Chuan-yuan, HAO Huai-qing, JING Hai-chun. Research Progress on the Stem Juiciness of Sweet Sorghum [J]. Biotechnology Bulletin, 2019, 35(5): 9-14. |
[10] | HAN Li-jie, CAI Hong-wei. Progress on Genetic Research of Sorghum Grain Weight [J]. Biotechnology Bulletin, 2019, 35(5): 15-27. |
[11] | DING Yan-qing, ZHOU Leng-bo, WANG Can, CAO Ning, CHENG Bin, GAO Xu, PENG Qiu, SHAO Ming-bo, ZHANG Li-yi. Research Advance in Glutinous Sorghum for Making Sauce-flavor Liquor in China [J]. Biotechnology Bulletin, 2019, 35(5): 28-34. |
[12] | SONG Yu-shuang, SUI Na. Functional Analysis of FAD7 Gene in Sweet Sorghum [J]. Biotechnology Bulletin, 2019, 35(5): 35-41. |
[13] | WANG Ping, CONG Ling, WANG Chun-yu, ZHU Zhen-xing, A Ashok KUMAR, ZHANG Li-xia, LU Xiao-chun. Comparison of Mitochondrial Genome Between A1 Cytoplasmic Male Sterile Line and Maintainer Line of Sorghum bicolor [J]. Biotechnology Bulletin, 2019, 35(5): 42-47. |
[14] | YUAN Chuang, XU Xing, TANG San-yuan, MAO Gui-lian, ZHU Lin. Identification of Drought Tolerance of Sweet Sorghum at Booting Stage [J]. Biotechnology Bulletin, 2019, 35(12): 1-9. |
[15] | WANG Ping, WANG Chun-yu, ZHANG Li-xia, CONG Ling, ZHU Zhen-xing, LU Xiao-chun. Development of SSR Molecular Markers with Sorghum Polymorphism Using Re-sequencing [J]. Biotechnology Bulletin, 2019, 35(11): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||