Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (7): 90-98.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1181
Previous Articles Next Articles
LI Ping(), GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao(), PENG You-lin()
Received:
2021-09-14
Online:
2022-07-26
Published:
2022-08-09
Contact:
HU Yun-gao,PENG You-lin
E-mail:834785074@qq.com;huyungao@swust.edu.cn;youlinp@hotmail.com
LI Ping, GUO Fa-ping, TIAN Min, SHUI Yang, XU Na-na, BAI Da-song, YU De-jin, ZHANG Jie, HU Yun-gao, PENG You-lin. Research Progress of Sterol in Regulating Plant Growth and Development[J]. Biotechnology Bulletin, 2022, 38(7): 90-98.
Fig.1 Arabidopsis sterol biosynthesis pathway One branch of this pathway comes from one or two methylation steps that produce two major end products,stigmasterol and rapesosterol. Brassinosterol is a precursor of brassinosterol,which is eventually synthesized into brassinolide. The enzymes or genes that catalyze these steps are shown in red[16⇓-18]
[1] |
Simon-Plas F, Perraki A, Bayer E, et al. An update on plant membrane rafts[J]. Curr Opin Plant Biol, 2011, 14(6):642-649.
doi: 10.1016/j.pbi.2011.08.003 pmid: 21903451 |
[2] |
Gilbert LI, Rybczynski R, Warren JT. Control and biochemical nature of the ecdysteroidogenic pathway[J]. Annu Rev Entomol, 2002, 47:883-916.
doi: 10.1146/annurev.ento.47.091201.145302 URL |
[3] |
Attard G, Cooper CS, de Bono JS. Steroid hormone receptors in prostate cancer:a hard habit to break?[J]. Cancer Cell, 2009, 16(6):458-462.
doi: 10.1016/j.ccr.2009.11.006 URL |
[4] |
Clouse SD. Plant development:a role for sterols in embryogenesis[J]. Curr Biol, 2000, 10(16):R601-R604.
doi: 10.1016/s0960-9822(00)00639-4 pmid: 10985378 |
[5] |
Lindsey K, Pullen ML, Topping JF. Importance of plant sterols in pattern formation and hormone signalling[J]. Trends Plant Sci, 2003, 8(11):521-525.
pmid: 14607096 |
[6] |
Boutté Y, Grebe M. Cellular processes relying on sterol function in plants[J]. Curr Opin Plant Biol, 2009, 12(6):705-713.
doi: 10.1016/j.pbi.2009.09.013 URL |
[7] |
Acharya BR, Assmann SM. Hormone interactions in stomatal function[J]. Plant Mol Biol, 2009, 69(4):451-462.
doi: 10.1007/s11103-008-9427-0 pmid: 19031047 |
[8] |
Divi UK, Krishna P. Brassinosteroid:a biotechnological target for enhancing crop yield and stress tolerance[J]. N Biotechnol, 2009, 26(3/4):131-136.
doi: 10.1016/j.nbt.2009.07.006 URL |
[9] |
Qian P, Han B, Forestier E, et al. Sterols are required for cell-fate commitment and maintenance of the stomatal lineage in Arabidopsis[J]. Plant J, 2013, 74(6):1029-1044.
doi: 10.1111/tpj.12190 URL |
[10] |
Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids[J]. Annu Rev Plant Biol, 2003, 54:137-164.
pmid: 14502988 |
[11] |
Choe S, Noguchi T, Fujioka S, et al. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis[J]. Plant Cell, 1999, 11(2):207-221.
pmid: 9927639 |
[12] |
He JX, Fujioka S, Li TC, et al. Sterols regulate development and gene expression in Arabidopsis[J]. Plant Physiol, 2003, 131(3):1258-1269.
doi: 10.1104/pp.014605 URL |
[13] |
Carland FM, Fujioka S, Takatsuto S, et al. The identification of CVP1 reveals a role for sterols in vascular patterning[J]. Plant Cell, 2002, 14(9):2045-2058.
doi: 10.1105/tpc.003939 URL |
[14] |
Carland F, Fujioka S, Nelson T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products[J]. Plant Physiol, 2010, 153(2):741-756.
doi: 10.1104/pp.109.152587 URL |
[15] |
Souter M, Topping J, Pullen M, et al. hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling[J]. Plant Cell, 2002, 14(5):1017-1031.
doi: 10.1105/tpc.001248 URL |
[16] |
Men S, Boutté Y, Ikeda Y, et al. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity[J]. Nat Cell Biol, 2008, 10(2):237-244.
doi: 10.1038/ncb1686 URL |
[17] |
Schrick K, Mayer U, Horrichs A, et al. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis[J]. Genes Dev, 2000, 14(12):1471-1484.
doi: 10.1101/gad.14.12.1471 URL |
[18] |
Pillitteri LJ, Torii KU. Mechanisms of stomatal development[J]. Annu Rev Plant Biol, 2012, 63:591-614.
doi: 10.1146/annurev-arplant-042811-105451 pmid: 22404473 |
[19] |
Kehr J, Buhtz A. Long distance transport and movement of RNA through the phloem[J]. J Exp Bot, 2008, 59(1):85-92.
doi: 10.1093/jxb/erm176 URL |
[20] |
Jang JC, Fujioka S, Tasaka M, et al. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana[J]. Genes Dev, 2000, 14(12):1485-1497.
doi: 10.1101/gad.14.12.1485 URL |
[21] |
Schrick K, Fujioka S, Takatsuto S, et al. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis[J]. Plant J, 2004, 38(2):227-243.
doi: 10.1111/j.1365-313X.2004.02039.x URL |
[22] |
Schrick K, Mayer U, Martin G, et al. Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis[J]. Plant J, 2002, 31(1):61-73.
doi: 10.1046/j.1365-313X.2002.01333.x URL |
[23] | Pullen M, Clark N, Zarinkamar F, et al. Analysis of vascular development in the hydra sterol biosynthetic mutants of Arabidopsis[J]. PLoS One, 2010, 5(8):e12227. |
[24] |
Caño-Delgado A, Yin YH, Yu C, et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis[J]. Development, 2004, 131(21):5341-5351.
pmid: 15486337 |
[25] | Souter MA, Pullen ML, Topping JF, et al. Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis[J]. Planta, 2004, 219(5):773-783. |
[26] |
Willemsen V, Friml J, Grebe M, et al. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function[J]. Plant Cell, 2003, 15(3):612-625.
pmid: 12615936 |
[27] |
Grebe M, Xu J, Möbius W, et al. Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes[J]. Curr Biol, 2003, 13(16):1378-1387.
doi: 10.1016/S0960-9822(03)00538-4 URL |
[28] |
Pan J, Fujioka S, Peng J, et al. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana[J]. Plant Cell, 2009, 21(2):568-580.
doi: 10.1105/tpc.108.061465 URL |
[29] |
Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1):109-120.
doi: 10.1016/j.cell.2004.09.018 URL |
[30] |
Tanaka K, Asami T, Yoshida S, et al. Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism[J]. Plant Physiol, 2005, 138(2):1117-1125.
doi: 10.1104/pp.104.058040 URL |
[31] |
Trevisan S, Forestan C, Brojanigo S, et al. Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves[J]. Plant Growth Regul, 2020, 92(1):117-130.
doi: 10.1007/s10725-020-00626-z URL |
[32] |
Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling[J]. New Phytol, 2015, 206(2):522-540.
doi: 10.1111/nph.13269 pmid: 25615890 |
[33] |
Li SM, Zheng HX, Lin L, et al. Roles of brassinosteroids in plant growth and abiotic stress response[J]. Plant Growth Regul, 2021, 93(1):29-38.
doi: 10.1007/s10725-020-00672-7 URL |
[34] |
Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid[J]. Plant J, 2009, 57(4):606-614.
doi: 10.1111/j.1365-313X.2008.03711.x URL |
[35] |
Peres A, Soares J, Tavares R, et al. Brassinosteroids, the sixth class of phytohormones:a molecular view from the discovery to hormonal interactions in plant development and stress adaptation[J]. Int J Mol Sci, 2019, 20(2):331.
doi: 10.3390/ijms20020331 URL |
[36] |
Zhang SS, Cai ZY, Wang XL. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling[J]. PNAS, 2009, 106(11):4543-4548.
doi: 10.1073/pnas.0900349106 URL |
[37] |
Nishiyama R, Watanabe Y, Fujita Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell, 2011, 23(6):2169-2183.
doi: 10.1105/tpc.111.087395 URL |
[38] |
Sahni S, Prasad BD, Liu Q, et al. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance[J]. Sci Rep, 2016, 6:28298.
doi: 10.1038/srep28298 URL |
[39] |
Li QF, Yu JW, Lu J, et al. Seed-specific expression of OsDWF4, a rate-limiting gene involved in brassinosteroids biosynthesis, improves both grain yield and quality in rice[J]. J Agric Food Chem, 2018, 66(15):3759-3772.
doi: 10.1021/acs.jafc.8b00077 URL |
[40] |
Goda H, Sawa S, Asami T, et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis[J]. Plant Physiol, 2004, 134(4):1555-1573.
doi: 10.1104/pp.103.034736 URL |
[41] |
Mao JP, Zhang D, Li K, et al. Effect of exogenous Brassinolide(BR)application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis[J]. Plant Growth Regul, 2017, 82(3):391-401.
doi: 10.1007/s10725-017-0264-5 URL |
[42] |
Li H, Jiang L, Youn JH, et al. A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice(Oryza sativa)[J]. New Phytol, 2013, 200(4):1076-1088.
doi: 10.1111/nph.12427 URL |
[43] |
Schaeffer A, Bronner R, Benveniste P, et al. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1[J]. Plant J, 2001, 25(6):605-615.
pmid: 11319028 |
[44] |
Zhang S, Li C, Ren HH, et al. BAK1 mediates light intensity to phosphorylate and activate catalases to regulate plant growth and development[J]. Int J Mol Sci, 2020, 21(4):1437.
doi: 10.3390/ijms21041437 URL |
[45] |
Wang LY, Tian YC, Shi W, et al. The miR396-GRFs module mediates the prevention of photo-oxidative damage by brassinosteroids during seedling de-etiolation in Arabidopsis[J]. Plant Cell, 2020, 32(8):2525-2542.
doi: 10.1105/tpc.20.00057 URL |
[46] |
Li JG, Fan M, Hua WB, et al. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation[J]. Plant Cell, 2020, 32(4):984-999.
doi: 10.1105/tpc.19.00587 URL |
[47] | Lee ZH, Hirakawa T, Yamaguchi N, et al. The roles of plant hormones and their interactions with regulatory genes in determining meristem activity[J]. Int J Mol Sci, 2019, 20(16):E4065. |
[48] |
Wang HS, Yu C, Tang XF, et al. Antisense-mediated depletion of tomato endoplasmic Reticulum omega-3 fatty acid desaturase enhances thermal tolerance[J]. J Integr Plant Biol, 2010, 52(6):568-577.
doi: 10.1111/j.1744-7909.2010.00957.x URL |
[49] |
Surjus A, Durand M. Lipid changes in soybean root membranes in response to salt treatment[J]. J Exp Bot, 1996, 47(1):17-23.
doi: 10.1093/jxb/47.1.17 URL |
[50] |
Soares TFSN, Dias DCFDS, Oliveira AMS, et al. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L[J]. Ecotoxicol Environ Saf, 2020, 193:110296.
doi: 10.1016/j.ecoenv.2020.110296 URL |
[51] |
Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiol Biochem, 2009, 47(1):1-8.
doi: 10.1016/j.plaphy.2008.10.002 URL |
[52] |
Zhang A, Zhang J, Ye N, et al. ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize[J]. J Exp Bot, 2010, 61(15):4399-4411.
doi: 10.1093/jxb/erq243 URL |
[53] | 江月玲, 刘顺枝, 胡位荣. “光形态建成”一章的教学方法探讨[C]// 中国植物生理学会第十次会员代表大会暨全国学术年会论文集. 开封, 2009:249-250. |
Jiang YL, Liu SZ, Hu WR. Discussion on teaching method of chapter “Photophysical Construction”[C]// Proceeding of the 10th Member Congress of Chinese Plant Physiology Society and the Annual Academic Conference. Kaifeng, 2009:249-250. | |
[54] | 商建秀, 张胜伟, 孙颖. 油菜素内酯、赤霉素与光共同调控拟南芥的细胞伸长和光形态建成[J]. 生物化学与生物物理进展, 2013, 40(3):228-230. |
Shang JX, Zhang SW, Sun Y. Brassinolactone, gibberellin and light regulate cell elongation and photomorphogenesis in Arabidopsis thaliana[J]. Prog Biochem Biophys, 2013, 40(3):228-230. | |
[55] | 顾南南, 杨洪全. 拟南芥phyB与CRY1结构与功能关系的研究[C]// 2007中国植物生理学会全国学术会议论文集. 石家庄, 2007:61. |
Gu NN, Yang HQ. Studies on the structure and function of phyB and CRY1 in Arabidopsis thaliana[C]// Proceedings of the International Conference on Plant Physiology. Shijiazhuang, 2007:61. | |
[56] | 胥峰, 王文秀, 赫圣博, 等. 拟南芥蓝光受体CRY1介导的光信号与生长素和油菜素内酯信号互作调控光形态建成的分子机理[C]// 2018全国植物生物学大会论文集. 泰安, 2018:226. |
Xu F, Wang WX, He SB, et al. Molecular mechanism of Arabidopsis thaliana blue light receptor Cry1 mediated photomorphogenesis and its interaction with auxin and brassinosteroid signals[C]// Proceedings of the International Conference on Plant Biology. Tai’an, 2018:226. |
[1] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[2] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[3] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[4] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[5] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[6] | SHANG Yi-tong, YAN Huan-huan, WANG Li-hong, TIAN Xue-qin, XUE Ping-hong, LUO Tao, HU Zhi-hong. Study on the Function of Phosphomevalonate Kinase in Aspergillus oryzae [J]. Biotechnology Bulletin, 2023, 39(12): 311-319. |
[7] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[8] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
[9] | ZHAO Xin, DU Yu-yao, YIN Zi-yang, MAO Shu-hong. Allogeneic Expression of Cholesterol 7α-hydroxylase in Pichia pastoris [J]. Biotechnology Bulletin, 2023, 39(10): 304-310. |
[10] | TANG Qian-qian, LIN Chu-yu, TAO Zeng. Research Progress in Histone Demethylase in Plant [J]. Biotechnology Bulletin, 2022, 38(7): 13-22. |
[11] | GU Pan, QI Xue-ying, LI Li, ZHANG Xi, SHAN Xiao-yi. Endocytosis of AtRGS1 Involved in the Regulation of G-protein-mediated Arabidopsis Development and Stress Responses [J]. Biotechnology Bulletin, 2022, 38(6): 34-42. |
[12] | YUE Man-fang, ZHANG Chun, WU Zhong-yi. Research Progress in the Structural and Functional Analysis of Plant Transcription Factor AP2/ERF Protein Family [J]. Biotechnology Bulletin, 2022, 38(12): 11-26. |
[13] | TANG Xiao-li, JIANG Fu-dong, ZHANG Hong-xia. Research Progress in the Functions of SINA E3 Ubiquitin Ligase in Plant [J]. Biotechnology Bulletin, 2022, 38(10): 10-17. |
[14] | QIAN Jing-jie, LIN Su-meng, ZHANG Dong-ping, GAO Yong. Phytochrome Interacting Factors Involving in Auxin-regulated Plant Growth and Development [J]. Biotechnology Bulletin, 2022, 38(10): 29-33. |
[15] | SU Yu, LI Zong-yun, HAN Yong-hua. Advances in Plant Vacuolar Processing Enzymes [J]. Biotechnology Bulletin, 2021, 37(6): 181-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||