Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 84-91.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1429
Previous Articles Next Articles
LIU Na(), JIAO Jing-lin, RAO Zheng-hua()
Received:
2021-11-06
Online:
2022-08-26
Published:
2022-09-14
Contact:
RAO Zheng-hua
E-mail:liuna@caas.cn;raozhenghua@caas.cn
LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples[J]. Biotechnology Bulletin, 2022, 38(8): 84-91.
[1] | 蒋恺憧, 程悦, 焦圣寅, 等. 粪便中6种短链脂肪酸的气相色谱快速检测法[J]. 现代预防医学, 2020, 47(4):686-689, 711. |
Jiang KC, Cheng Y, Jiao SY, et al. Rapid determination of 6 short-chain fatty acids in feces by gas chromatography[J]. Mod Prev Med, 2020, 47(4):686-689, 711. | |
[2] | 黎宇, 杨琳, 朱勇文, 等. 日粮纤维对畜禽肠道健康的调控作用研究进展[J]. 黑龙江畜牧兽医, 2021(15):29-35. |
Li Y, Yang L, Zhu YW, et al. Research progress of dietary fiber regulation on intestinal health of livestock and poultry[J]. Heilongjiang Animal Sci Vet Med, 2021(15):29-35. | |
[3] | 薛永强, 张辉华, 等. 短链脂肪酸对肠道健康的调控机制及在动物生产中的应用[J]. 饲料工业, 2020, 41(19):18-22. |
Xue YQ, Zhang HH, et al. Regulation mechanism of short-chain fatty acids on intestinal health and their application in animal production[J]. Feed Ind, 2020, 41(19):18-22. | |
[4] |
Shabat SKB, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. ISME J, 2016, 10(12):2958-2972.
doi: 10.1038/ismej.2016.62 URL |
[5] | 唐文浩, 张养东, 郑楠, 等. 短链脂肪酸的生理功能及其在奶牛生产中的研究进展[J]. 饲料工业, 2021, 42(15):43-48. |
Tang WH, Zhang YD, Zheng N, et al. Physiological function of short-chain fatty acids and its application in dairy production[J]. Feed Ind, 2021, 42(15):43-48. | |
[6] |
Koh A, de Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
doi: 10.1016/j.cell.2016.05.041 URL |
[7] | 程雅婷, 孔祥峰. 短链脂肪酸的生理作用及其在母猪生产中的应用[J]. 动物营养学报, 2021, 33(10):5435-5440. |
Cheng YT, Kong XF. Physiological functions of short-chain fatty acids and their application in sow production[J]. Chin J Animal Nutr, 2021, 33(10):5435-5440. | |
[8] | 宫玉杰, 邹晓庭, 肖英平, 等. 生理盐水实验性干预对肉鸡盲肠微生物区系和短链脂肪酸含量的影响[J]. 中国实验动物学报, 2019, 27(1):38-45. |
Gong YJ, Zou XT, Xiao YP, et al. Effects of experimental intervention with normal saline on the microflora and short-chain fatty acid content in the cecum of broilers[J]. Acta Lab Animalis Sci Sin, 2019, 27(1):38-45. | |
[9] |
Koh A, de Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6):1332-1345.
doi: 10.1016/j.cell.2016.05.041 URL |
[10] |
Zhao GH, Nyman M, Jönsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography[J]. Biomed Chromatogr, 2006, 20(8):674-682.
doi: 10.1002/bmc.580 URL |
[11] |
Brestenský M, Nitrayová S, Bomba A, et al. The content of short chain fatty acids in the jejunal digesta, caecal digesta and faeces of growing pigs[J]. Livest Sci, 2017, 205:106-110.
doi: 10.1016/j.livsci.2017.09.015 URL |
[12] |
Zhao JB, Bai Y, Tao SY, et al. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model[J]. J Funct Foods, 2019, 57:266-274.
doi: 10.1016/j.jff.2019.04.009 URL |
[13] |
Li JY, Chen DW, Yu B, et al. The fungal community and its interaction with the concentration of short-chain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs[J]. Microb Biotechnol, 2020, 13(2):509-521.
doi: 10.1111/1751-7915.13507 URL |
[14] |
Franklin MA, Mathew AG, Vickers JR, et al. Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs 24 days of age[J]. J Anim Sci, 2002, 80(11):2904-2910.
pmid: 12462258 |
[15] |
Liu CS, Liang X, Wei XH, et al. Gegen Qinlian Decoction treats diarrhea in piglets by modulating gut microbiota and short-chain fatty acids[J]. Front Microbiol, 2019, 10:825.
doi: 10.3389/fmicb.2019.00825 URL |
[16] |
Wu Y, Pan L, Shang QH, et al. Effects of isomalto-oligosaccharides as potential prebiotics on performance, immune function and gut microbiota in weaned pigs[J]. Animal Feed Sci Technol, 2017, 230:126-135.
doi: 10.1016/j.anifeedsci.2017.05.013 URL |
[17] | Liu XZ, Zhao JB, Zhang G, et al. Dietary supplementation with Flammulina velutipes stem waste on growth performance, fecal short chain fatty acids and serum profile in weaned piglets[J]. Animals(Basel), 2020, 10(1):82. |
[18] |
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294(1):1-8.
doi: 10.1111/j.1574-6968.2009.01514.x URL |
[19] |
Nielsen TS, Lærke HN, Theil PK, et al. Diets high in resistant starch and Arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs[J]. Br J Nutr, 2014, 112(11):1837-1849.
doi: 10.1017/S000711451400302X URL |
[20] | 刁慧. 猪肠道微生物与SCFAs对肠道结构和功能的影响及其机制[D]. 雅安: 四川农业大学, 2017. |
Diao H. Effects of gut microbiota and SCFAs on intestinal structure and functions of pigs and the underlying mechanisms[D]. Ya'an: Sichuan Agricultural University, 2017. | |
[21] |
Pieper R, Kröger S, Richter JF, et al. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets[J]. J Nutr, 2012, 142(4):661-667.
doi: 10.3945/jn.111.156190 URL |
[22] | 王伟兰. 不同日粮纤维对猪肠道微生物多样性及挥发性脂肪酸的影响[D]. 南京: 南京农业大学, 2014. |
Wang WL. Influence of different diet fiber on swine gastrointestinal tract microbial diversity and volatile fatty acid[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[23] | 彭宇, 柴毛毛, 崔细鹏, 等. 丁酸类添加剂及其与合生元组合对肉鸡生长性能和肠道健康的影响[J]. 动物营养学报, 2020, 32(11):5145-5157. |
Peng Y, Chai MM, Cui XP, et al. Effects of butyric acids additives alone or combination with synbiotics on growth performance and gut health of broilers[J]. Chin J Animal Nutr, 2020, 32(11):5145-5157. | |
[24] | 魏宇超, 王凤霞, 张灿, 等. 枯草芽孢杆菌对肉兔肠道结构、盲肠挥发性脂肪酸含量和微生物多样性的影响[J]. 动物营养学报, 2021, 33(12):7021-7032. |
Wei YC, Wang FX, Zhang C, et al. Effects of Bacillus subtilis on intestinal structure, cecal volatile fatty acid contents and microbial diversity of meat rabbits[J]. Chin J Animal Nutr, 2021, 33(12):7021-7032. | |
[25] | 金灵, 罗海凌, 高玉云, 等. 饲粮粗纤维水平与砂砾对四川白鹅肠道组织形态、纤维分解酶活性及挥发性脂肪酸含量的影响[J]. 动物营养学报, 2020, 32(7):3403-3411. |
Jin L, Luo HL, Gao YY, et al. Effects of dietary fiber lever and grit on intestinal morphology, cellulolytic enzyme activities and volatile fatty acid contents in Sichuan white geese[J]. Chin J Animal Nutr, 2020, 32(7):3403-3411. | |
[26] | 陈希, 姜婉茹, 等. 麦秸对湖羊瘤胃发酵代谢及肠道组织形态的影响[J]. 中国农业大学学报, 2021, 26(8):120-130. |
Chen X, Jiang WR, et al. Effect of wheat straw feeding on rumen fermentation metabolism and intestinal tissue morphology of Hu sheep[J]. J China Agric Univ, 2021, 26(8):120-130. | |
[27] |
Chibisa GE, Gorka P, Penner GB, et al. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows[J]. J Dairy Sci, 2015, 98(4):2627-2640.
doi: 10.3168/jds.2014-8827 pmid: 25704977 |
[28] |
Qumar M, Khiaosa-Ard R, Pourazad P, et al. Evidence of in vivo absorption of lactate and modulation of short chain fatty acid absorption from the reticulorumen of non-lactating cattle fed high concentrate diets[J]. PLoS One, 2016, 11(10):e0164192.
doi: 10.1371/journal.pone.0164192 URL |
[29] |
Schwaiger T, Beauchemin KA, Penner GB. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis:dry matter intake and ruminal fermentation[J]. J Anim Sci, 2013, 91(12):5729-5742.
doi: 10.2527/jas.2013-6471 pmid: 24158369 |
[30] | 沙玉柱. 放牧藏绵羊瘤胃发酵-宿主-微生物互作对其寒冷环境适应的影响[D]. 兰州: 甘肃农业大学, 2021. |
Sha YZ. Effect of rumen fermentation-host-microbe interaction on the adaptation to cold environment of grazing Tibetan sheep[D]. Lanzhou: Gansu Agricultural University, 2021. | |
[31] | 严淑红, 赵士萍, 等. 茶皂素对奶牛瘤胃发酵及瘤胃微生物区系的影响[J]. 动物营养学报, 2016, 28(8):2485-2496. |
Yan SH, Zhao SP, et al. Effects of tea saponin on rumen fermentation and rumen microflora of dairy cows[J]. Chin J Animal Nutr, 2016, 28(8):2485-2496. | |
[32] | 郝小燕, 牟春堂, 乔栋, 等. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响[J]. 中国农业科学, 2021, 54(10):2239-2248. |
Hao XY, Mu CT, Qiao D, et al. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on rumen fermentation, inflammatory and antioxidant indicators of rumen and serum in lambs[J]. Sci Agric Sin, 2021, 54(10):2239-2248. | |
[33] | 胡伟莲, 王佳堃, 吕建敏, 等. 瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定[J]. 浙江大学学报:农业与生命科学版, 2006, 32(2):217-221. |
Hu WL, Wang JK, Lv JM, et al. Rapid gas chromatogram determination of methane, organic acid in in vitro ruminal fermentation products[J]. J Zhejiang Univ Agric Life Sci, 2006, 32(2):217-221. | |
[34] | 刘晓东. 气相色谱内标法定量分析教学实验[J]. 实验科学与技术, 2009, 7(4):23-24, 29. |
Liu XD. Teaching experiment compilation on quantitative analysis of gas chromatographic internal standard method[J]. Exp Sci Technol, 2009, 7(4):23-24, 29. | |
[35] | 张晓彤, 云自厚. 液相色谱检测方法[M]. 北京: 化学工业出版社, 2000. |
Zhang XT, Yun ZH. Liquid chromatography method for detection[M]. Beijing: Chemical Industry Press, 2000. | |
[36] |
Eberhart BL 2nd, Wilson AS, O’Keefe SJD, et al. A simplified method for the quantitation of short-chain fatty acids in human stool[J]. Anal Biochem, 2021, 612:114016.
doi: 10.1016/j.ab.2020.114016 URL |
[37] | 张博, 杨俊, 冯志, 等. 13C标记法测定猪血液、大肠组织和大肠内容物中挥发性脂肪酸含量[J]. 中国畜牧杂志, 2021, 57(10):209-213. |
Zhang B, Yang J, Feng Z, et al. Determination of volatile fatty acids in pig blood, Colon tissue and colon contents by 13C labeling[J]. Chin J Animal Sci, 2021, 57(10):209-213. | |
[38] |
Markantonatos X, Green MH, Varga GA. Use of compartmental analysis to study ruminal volatile fatty acid metabolism under steady state conditions in Holstein heifers[J]. Animal Feed Sci Technol, 2008, 143(1/2/3/4):70-88.
doi: 10.1016/j.anifeedsci.2007.05.005 URL |
[39] |
谭力, 鞠熀先, 黎介寿. 生物样品中短链脂肪酸的提取与测定[J]. 色谱, 2006, 24(1):81-87.
pmid: 16827319 |
Tan L, Ju HX, Li JS. Extraction and determination of short-chain fatty acids in biological samples[J]. Chin J Chromatogr, 2006, 24(1):81-87.
pmid: 16827319 |
|
[40] | 邵玉健, 沈红, 徐金娣, 等. 粪便中短链脂肪酸测定方法研究进展[J]. 药物分析杂志, 2019, 39(6):967-974. |
Shao YJ, Shen H, Xu JD, et al. Advance in determination of short-chain fatty acids of gut bacterial metabolites in feces[J]. Chin J Pharm Anal, 2019, 39(6):967-974. | |
[41] |
Wallace AJ, Eady SL, Hunter DC, et al. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination[J]. Nutr Res, 2015, 35(1):23-34.
doi: 10.1016/j.nutres.2014.11.002 pmid: 25530011 |
[42] | 张晓伟, 孙鑫, 李秀娟, 等. 衍生化-顶空固相微萃取-气相色谱法测定大鼠粪便中游离短链脂肪酸[J]. 华中农业大学学报, 2021, 40(5):160-168. |
Zhang XW, Sun X, Li XJ, et al. Determination of free short-chain fatty acids in rat feces by derivatization-headspace solid-phase microextraction-gas chromatography[J]. J Huazhong Agric Univ, 2021, 40(5):160-168. | |
[43] |
Zheng XJ, Qiu YP, Zhong W, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids[J]. Metabolomics, 2013, 9(4):818-827.
doi: 10.1007/s11306-013-0500-6 URL |
[44] |
Torii T, Kanemitsu K, Wada T, et al. Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography:specimen stability[J]. Ann Clin Biochem, 2010, 47(Pt 5):447-452.
doi: 10.1258/acb.2010.010047 pmid: 20595408 |
[45] |
Weir TL, Manter DK, Sheflin AM, et al. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults[J]. PLoS One, 2013, 8(8):e70803.
doi: 10.1371/journal.pone.0070803 URL |
[46] | Zhao GH, Nyman M, Jönsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography[J]. Biomed Chromatogr, 2006(8):674-682. |
[47] |
Okazaki M, Matsukuma S, Suto R, et al. Perioperative synbiotic therapy in elderly patients undergoing gastroenterological surgery:a prospective, randomized control trial[J]. Nutrition, 2013, 29(10):1224-1230.
doi: 10.1016/j.nut.2013.03.015 URL |
[48] |
Ohigashi S, Sudo K, Kobayashi D, et al. Significant changes in the intestinal environment after surgery in patients with colorectal cancer[J]. J Gastrointest Surg, 2013, 17(9):1657-1664.
doi: 10.1007/s11605-013-2270-x pmid: 23807702 |
[49] |
Sullivan HM, Martin SA. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation[J]. J Dairy Sci, 1999, 82(9):2011-2016.
pmid: 10509261 |
[50] | James AT, Martin AJP. Gas-liquid partition chromatography;the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid[J]. Biochem J, 1952(5):679-690. |
[51] | 王俊红, 高歌, 张圆圆, 等. 顶空-气相色谱法测定反刍动物瘤胃液中挥发性脂肪酸含量[J]. 浙江大学学报:农业与生命科学版, 2021, 47(5):667-672. |
Wang JH, Gao G, Zhang YY, et al. Determination of the volatile fatty acid contents in rumen fluid of ruminants by headspace-gas chromatograph method[J]. J Zhejiang Univ Agric Life Sci, 2021, 47(5):667-672. | |
[52] | Cerkowniak M, Bogus MI, Wloka E, et al. Comparison of the volatile compounds of Dermestes maculatus and Dermestes ater pupae:application of headspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC/MS)[J]. ISJ Invertebr Surviv J, 2017, 14:303-311. |
[53] |
Korntner P, Schedl A, et al. Sulfonic acid group determination in lignosulfonates by headspace gas chromatography[J]. ACS Sustainable Chem Eng, 2018, 6(5):6240-6246.
doi: 10.1021/acssuschemeng.8b00011 URL |
[54] |
Li MQ, Yang RW, et al. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chem, 2019, 290:32-39.
doi: 10.1016/j.foodchem.2019.03.124 URL |
[55] | 江振作, 王跃飞, 等. 顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸[J]. 分析化学, 2014, 42(3):429-435. |
Jiang ZZ, Wang YF, et al. Rapid analysis of volatile fatty acids in feces by headspace gas chromatography tandem mass spectrometry[J]. Chin J Anal Chem, 2014, 42(3):429-435. | |
[56] | 高慧. 离子色谱和液相色谱串联质谱法测定食品中的添加剂[D]. 泰安: 山东农业大学, 2012. |
Gao H. Determination of food additives in food by ion chromatography and liquid chromatography-electrospray tandem mass spectrometry[D]. Tai'an: Shandong Agricultural University, 2012. | |
[57] |
Douny C, Dufourny S, et al. Development of an analytical method to detect short-chain fatty acids by SPME-GC-MS in samples coming from an in vitro gastrointestinal model[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1124:188-196.
doi: 10.1016/j.jchromb.2019.06.013 URL |
[58] |
Bianchi F, Dall’Asta M, Rio DD, et al. Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation[J]. Food Chem, 2011, 129(1):200-205.
doi: 10.1016/j.foodchem.2011.04.022 URL |
[59] |
Correia Sales GF, Carvalho BF, Schwan RF, et al. Heat stress influence the microbiota and organic acids concentration in beef cattle rumen[J]. J Therm Biol, 2021, 97:102897.
doi: 10.1016/j.jtherbio.2021.102897 URL |
[60] |
Correia Sales GF, Carvalho BF, Schwan RF, et al. Heat stress influence the microbiota and organic acids concentration in beef cattle rumen[J]. J Therm Biol, 2021, 97 :102897.
doi: 10.1016/j.jtherbio.2021.102897 URL |
[61] |
Inoue H, Takayama K, Takahara C, et al. Determination of short-chain fatty acids in mouse feces by high-performance liquid chromatography using 2-nitrophenylhydrazine as a labeling reagent[J]. Biol Pharm Bull, 2019, 42(5):845-849.
doi: 10.1248/bpb.b18-01017 URL |
[62] | Fu H, Zhang QL, et al. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2020, 34(9):e8730. |
[63] |
Zheng J, Zheng SJ, Cai WJ, et al. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids[J]. Anal Chim Acta, 2019, 1070:51-59.
doi: S0003-2670(19)30430-1 pmid: 31103167 |
[64] |
Zeng MF, Cao HC. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1083:137-145.
doi: 10.1016/j.jchromb.2018.02.040 URL |
[65] |
Wei JT, Xiang L, Li XN, et al. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse[J]. Anal Chim Acta, 2020, 1100:66-74.
doi: 10.1016/j.aca.2019.11.009 URL |
[66] |
Souza PT, et al. Kinetic of the formation of short-chain carboxylic acids during the induced oxidation of different lipid samples using ion chromatography[J]. Fuel, 2017, 199:239-247.
doi: 10.1016/j.fuel.2017.02.093 URL |
[67] |
Dias JC, Suzuki E, de Albuquerque CL, et al. Determination of short-chain fatty acids in dietary fiber extracts using ion-exclusion chromatography with suppressed conductivity detection[J]. J Pharm Biomed Anal, 2009, 49(4):1128-1132.
doi: 10.1016/j.jpba.2009.02.013 URL |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[3] | LIU Yu, DING Qian-wen, RAN Chao, YANG Ya-lin, WANG An-ran, ZHANG Hong-ling, ZHANG Jin-xiong, LI Jie, Rolf Erik OLSEN, Einar RINGØ, ZHANG Zhen, ZHOU Zhi-gang. Research Advances on Short-chain Fatty Acids of Metabolites of Gut Microbiota in Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 58-64. |
[4] | LIN Miao, WANG Kuo-peng, CHEN Ying-liang, SUN Wen-jing, FENG Li-mei, HU Zi-xuan. Effects of Ethanol on Metabolites and Bacterial Community of Rice Straw Cocultured with Rumen Fluid in vitro [J]. Biotechnology Bulletin, 2020, 36(2): 91-99. |
[5] | FAN Xu-jia, BIAN Yan-hui, YIN Hai-song , QIAO Chang-sheng. Optimization of Sample Pretreatment Method for Metabolomics Studies of Aureobasidium pullulans Producing Polymalic Acid [J]. Biotechnology Bulletin, 2016, 32(6): 54-59. |
[6] | WANG Hai-yan,, ZHU Zhi-xuan, JIN Jing ,DING Yi. The Optimization of Chromosome Preparation and Immunofluorescence Staining for Root Tip of Nelumbo nucifera [J]. Biotechnology Bulletin, 2016, 32(4): 74-79. |
[7] | Jiang Chao, Su Xiaoqin, Zhang Xuewen, Pan Yinghong. Pretreatment and Application of Membrane for Dot Hybridization [J]. Biotechnology Bulletin, 2015, 31(11): 121-124. |
[8] | Bai Yanbo, Li Jiao, Zhang Baolong, Xin Shigang, Bu Ning, Ma Lianju, Li Xuemei. Research Advance on Effect of Drought Stress on Mineral Elements of Plant [J]. Biotechnology Bulletin, 2013, 0(3): 15-18. |
[9] | Wang Huan, He Laping, Zhou Huanjing, Zhang Yiming, Li Cuiqin, Tao Han. Determination Methods for Lipase Activity and Its Application in the Screening of Microbial Lipase [J]. Biotechnology Bulletin, 2013, 0(1): 203-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||