Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (3): 162-174.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0892
Previous Articles Next Articles
ZHAI Xu-hang(), LI Xia(), YUAN Ying-jin
Received:
2020-07-17
Online:
2021-03-26
Published:
2021-04-02
Contact:
LI Xia
E-mail:zhaixuhang@tju.edu.cn;lixia01@tju.edu.cn
ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method[J]. Biotechnology Bulletin, 2021, 37(3): 162-174.
预处理方法 | 活性成分 | 作用机理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
离子液体预处理 | 大有机阳离子和小无机阴离子 | 聚合物的分离 | 环保,可用温度范围广 | 成本高 | [ |
蒸汽爆破预处理 | 高温蒸汽,可能有催化剂辅助 | 半纤维素的水解,内部纤维的分离 | 木质素转化,半纤维素溶解,性价比高 | 反应温度与压力较高 | [ |
稀酸预处理 | H2SO4,H3PO4等强酸 | 半纤维素的水解 | 反应快,不需要回收酸 | 反应温度与压力较高,会生成抑制剂 | [ |
碱预处理 | NaOH,Na2CO3等类似的碱化合物 | 木质素的提取 | 常温预处理,破坏木质素 | 无法实现糖的降解,反应后需加酸中和 | [ |
辐照预处理 | 伽马射线,钴60和铯137是常用的放射性物质 | 化学键破坏 | 简单可靠,可以促进菌株生长 | 需同其他预处理方法结合才能发挥最大作用 | [ |
机械破碎预处理 | 粒径的降低 | 表面积提高,强化接触 | 降低了粒径和纤维素结晶度,有效提高了后续其他预处理方法的效率 | 不能去除木质素和半纤维素,高能耗,成本高 | [ |
超声预处理 | 超声波 | 化学键破坏 | 不需加入其他试剂 | 大规模反应太过昂贵 | [ |
氧化预处理 | 臭氧,光等氧化剂 | 降解木质素 | 环保,高效移除木质素 | 成本高 | [ |
有机溶剂预处理 | 有机溶剂,如乙醇、丁醇等,可能有催化剂辅助 | 木质素的提取 | 可以得到纯木质素,纤维素和半纤维素 | 成本高,对环境和后续发酵有一定影响 | [ |
预处理方法 | 活性成分 | 作用机理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
离子液体预处理 | 大有机阳离子和小无机阴离子 | 聚合物的分离 | 环保,可用温度范围广 | 成本高 | [ |
蒸汽爆破预处理 | 高温蒸汽,可能有催化剂辅助 | 半纤维素的水解,内部纤维的分离 | 木质素转化,半纤维素溶解,性价比高 | 反应温度与压力较高 | [ |
稀酸预处理 | H2SO4,H3PO4等强酸 | 半纤维素的水解 | 反应快,不需要回收酸 | 反应温度与压力较高,会生成抑制剂 | [ |
碱预处理 | NaOH,Na2CO3等类似的碱化合物 | 木质素的提取 | 常温预处理,破坏木质素 | 无法实现糖的降解,反应后需加酸中和 | [ |
辐照预处理 | 伽马射线,钴60和铯137是常用的放射性物质 | 化学键破坏 | 简单可靠,可以促进菌株生长 | 需同其他预处理方法结合才能发挥最大作用 | [ |
机械破碎预处理 | 粒径的降低 | 表面积提高,强化接触 | 降低了粒径和纤维素结晶度,有效提高了后续其他预处理方法的效率 | 不能去除木质素和半纤维素,高能耗,成本高 | [ |
超声预处理 | 超声波 | 化学键破坏 | 不需加入其他试剂 | 大规模反应太过昂贵 | [ |
氧化预处理 | 臭氧,光等氧化剂 | 降解木质素 | 环保,高效移除木质素 | 成本高 | [ |
有机溶剂预处理 | 有机溶剂,如乙醇、丁醇等,可能有催化剂辅助 | 木质素的提取 | 可以得到纯木质素,纤维素和半纤维素 | 成本高,对环境和后续发酵有一定影响 | [ |
生物质 | DES | 时间/h | 温度/℃ | 主要产物 | 产率 | 参考文献 |
---|---|---|---|---|---|---|
玉米秸秆 | ChCl:(1.甲酸2.尿素3.甘油4.乙酸5.草酸6.丙二酸7.柠檬酸) | 0.5-3 | 90-130 | 生物丁醇 | 对于1来说,葡萄糖:99%(17 g/L);丁醇:5.6 g/L(0.17 g/g葡萄糖) | [ |
柳树 | ChCl:(1.乳酸2.甘油) 3.氯仿:尿素 | 6-42 | 90-120 | 木质素 | 对于1来说,产物纯度为94.5%,产率为91.8% | [ |
稻草 | ChCl:(1.苹果酸2.柠檬酸3.酒石酸4.乳酸5.草酸6.丙二酸7.乙二醇8. 1,2丙二醇)9.氯仿:尿素10. ChCl:甘油 | 0.5-12 | 60-121 | 木质素 葡萄糖 乙醇 | 对于4来说,木质素移除率为57.2%;对于10来说,葡萄糖得率为87.1%,乙醇得率为89.5% | [ |
云杉锯末 | ChCl:(1.硼酸2.甘油) 3.甜菜碱:甘油 | 24 | 80 | 葡萄糖 | 酶解后得率小于20% | [ |
生物质 | DES | 时间/h | 温度/℃ | 主要产物 | 产率 | 参考文献 |
---|---|---|---|---|---|---|
玉米秸秆 | ChCl:(1.甲酸2.尿素3.甘油4.乙酸5.草酸6.丙二酸7.柠檬酸) | 0.5-3 | 90-130 | 生物丁醇 | 对于1来说,葡萄糖:99%(17 g/L);丁醇:5.6 g/L(0.17 g/g葡萄糖) | [ |
柳树 | ChCl:(1.乳酸2.甘油) 3.氯仿:尿素 | 6-42 | 90-120 | 木质素 | 对于1来说,产物纯度为94.5%,产率为91.8% | [ |
稻草 | ChCl:(1.苹果酸2.柠檬酸3.酒石酸4.乳酸5.草酸6.丙二酸7.乙二醇8. 1,2丙二醇)9.氯仿:尿素10. ChCl:甘油 | 0.5-12 | 60-121 | 木质素 葡萄糖 乙醇 | 对于4来说,木质素移除率为57.2%;对于10来说,葡萄糖得率为87.1%,乙醇得率为89.5% | [ |
云杉锯末 | ChCl:(1.硼酸2.甘油) 3.甜菜碱:甘油 | 24 | 80 | 葡萄糖 | 酶解后得率小于20% | [ |
底物 | 产物 | 微生物 | 产物浓度/(g·L-1) | 微生物联合体的主要特性 | 参考文献 |
---|---|---|---|---|---|
预处理并水解后的甘蔗渣 | 乙醇 | 大肠杆菌,酿酒酵母进行木糖发酵与葡萄糖发酵产乙醇 | 24.9 | 同时利用两种糖,没有碳分解代谢物的抑制,缩短了发酵时间(<30 h) | [ |
碱提取后的带壳玉米芯 | 丙酮,丁醇,乙醇 | 纤维素分解菌,嗜热念珠菌 | 22.1 | 工程化的嗜温纤维素分解菌提供了可溶性糖和丁酸,嗜热念珠菌将己糖,戊糖和丁酸转化为最终产品 | [ |
去木质素的稻草 | 丁酸 | 热纤梭菌,丁酸梭菌 | 33.9 | 热纤梭菌将纤维素分解并提供了可溶性的糖,丁酸梭菌将糖和副产物转化为丁酸 | [ |
去木质素的稻草 | 丁醇 | 热纤梭菌,糖基丙酮丁酸梭菌 | 5.5 | 热纤梭菌分解纤维素提供了可溶性的糖,在温度从55℃降为30℃后,延迟接种糖基丙酮丁酸梭菌,将可溶性糖转化为丁醇 | [ |
预处理后的玉米秸秆 | 异丁醇 | 里氏木霉,大肠杆菌 | 1.88 | 里氏木霉分解纤维素提供了可溶性糖,工程化的大肠杆菌将这些糖转化为异丁醇 | [ |
底物 | 产物 | 微生物 | 产物浓度/(g·L-1) | 微生物联合体的主要特性 | 参考文献 |
---|---|---|---|---|---|
预处理并水解后的甘蔗渣 | 乙醇 | 大肠杆菌,酿酒酵母进行木糖发酵与葡萄糖发酵产乙醇 | 24.9 | 同时利用两种糖,没有碳分解代谢物的抑制,缩短了发酵时间(<30 h) | [ |
碱提取后的带壳玉米芯 | 丙酮,丁醇,乙醇 | 纤维素分解菌,嗜热念珠菌 | 22.1 | 工程化的嗜温纤维素分解菌提供了可溶性糖和丁酸,嗜热念珠菌将己糖,戊糖和丁酸转化为最终产品 | [ |
去木质素的稻草 | 丁酸 | 热纤梭菌,丁酸梭菌 | 33.9 | 热纤梭菌将纤维素分解并提供了可溶性的糖,丁酸梭菌将糖和副产物转化为丁酸 | [ |
去木质素的稻草 | 丁醇 | 热纤梭菌,糖基丙酮丁酸梭菌 | 5.5 | 热纤梭菌分解纤维素提供了可溶性的糖,在温度从55℃降为30℃后,延迟接种糖基丙酮丁酸梭菌,将可溶性糖转化为丁醇 | [ |
预处理后的玉米秸秆 | 异丁醇 | 里氏木霉,大肠杆菌 | 1.88 | 里氏木霉分解纤维素提供了可溶性糖,工程化的大肠杆菌将这些糖转化为异丁醇 | [ |
[1] | Watts N, Amann M, Arnell N, et al. The 2018 report of the lancet countdown on health and climate change:shaping the health of nations for centuries to come[J]. Lancet, 2018,6736(18):5-12. |
[2] |
Mori T, Tsuboi Y, Ishida N, et al. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose[J]. Scientific Reports, 2015,5(1):11848.
doi: 10.1038/srep11848 URL |
[3] | Knauf M, Moniruzzaman M. Lignocellulosic biomass processing:A perspective[J]. International Sugar Journal, 2004,106(1263):147-150. |
[4] | Saradhi I, Pandit G, Puranik V. Energy supply, demand and environmental analysis-a case study of Indian energy scenario[J]. International Journal of Civil and Enviromental Engineering, 2009,1(3):115-120. |
[5] |
Gomez, Leonardo D, Vanholme R, et al. Side by side comparison of chemical compounds generated by aqueous pretreatments of maize stover, miscanthus and sugarcane bagasse[J]. BioEnergy Research, 2014,7(4):1466-1480.
doi: 10.1007/s12155-014-9480-2 URL |
[6] |
An YX, Zong MH, Wu H, et al. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids:Biomass fractionation, enzymatic digestion and ionic liquid reuse[J]. Bioresource Technology, 2015,192:165-171.
doi: 10.1016/j.biortech.2015.05.064 URL pmid: 26026293 |
[7] |
Chandra RP, Arantes V, Saddler J. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose[J]. Bioresource Technology, 2015,185:302-307.
doi: 10.1016/j.biortech.2015.02.106 URL pmid: 25780906 |
[8] |
Michalska K, Miazek K, Krzystek L, et al. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass[J]. Bioresource Technology, 2012,119(10):72-78.
doi: 10.1016/j.biortech.2012.05.105 URL |
[9] |
Palmqvist E, Hahn Gerdal B. Fermentation of lignocellulosic hydrolysates. II:inhibitors and mechanisms of inhibition[J]. Bioresource Technology, 2000,74(1):25-33.
doi: 10.1016/S0960-8524(99)00161-3 URL |
[10] |
Alvira P, Tomas PE, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review[J]. Bioresource Technology, 2010,101(13):4851-4861.
URL pmid: 20042329 |
[11] |
Liu Y, Zhou H, Wang LY, et al. Improving Saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification[J]. Chemical Engineering Journal, 2016,287:302-312.
doi: 10.1016/j.cej.2015.10.086 URL |
[12] |
Liu Y, Guo L, Wang L, et al. Irradiation pretreatment facilitates the achievement of high total sugars concentration from lignocellulose biomass[J]. Bioresource Technology, 2017,232(7):270-277.
doi: 10.1016/j.biortech.2017.01.061 URL |
[13] |
Zhou H, Xu H, Wang X, et al. Convergent production of 2, 5-furandicarboxylic acid from biomass and CO2[J]. Green Chemistry, 2019,21:2923-2927.
doi: 10.1039/C9GC00869A URL |
[14] |
Zubrowska SM, Walczak J. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms[J]. Water Research, 2014,61(15):200-209.
doi: 10.1016/j.watres.2014.05.029 URL |
[15] |
Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009,3(1):25-31.
doi: 10.1166/jbmb.2009.1002 URL |
[16] |
Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology, 2003,83(1):1-11.
doi: 10.1016/s0960-8524(01)00212-7 URL pmid: 12058826 |
[17] |
Ostovareh S, Karimi K, Zamani A. Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment[J]. Industrial Crops and Products, 2015,66:170-177.
doi: 10.1016/j.indcrop.2014.12.023 URL |
[18] |
Lee JY, Li P, Lee J, et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation[J]. Bioresource Technology, 2013,127(9):119-125.
doi: 10.1016/j.biortech.2012.09.122 URL |
[19] |
Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems[J]. Biotechnol Bioeng, 2004,88(7):797-824.
doi: 10.1002/bit.20282 URL pmid: 15538721 |
[20] |
Qing Q, Yang B, Wyman CE. Impact of surfactants on pretreatment of corn stover[J]. Bioresource Technology, 2010,101(15):5941-5951.
doi: 10.1016/j.biortech.2010.03.003 pmid: 20304637 |
[21] | Satyanagalakshmi K, Sindhu R, et al. Bioethanol production from acid pretreated water-hyacinth by separate hydrolysis and fermentation[J]. Journal of Scientific and Industrial Research, 2011,70(2):156-161. |
[22] | Zhang B, Shahbazi A, Wang L, et al. The pretreatment, enzymatic hydrolysis, and fermentation of cattails from constructed wetlands[J]. Energy Sources, 2013,35(3):246-252. |
[23] |
Jeong TS, Um BH, Kim JS, et al. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose[J]. Applied Biochemistry & Biotechnology, 2010,161(1-8):22-33.
doi: 10.1007/s12010-009-8898-z URL pmid: 20087686 |
[24] |
Kim TH. Sequential hydrolysis of hemicellulose and lignin in lignocellulosic biomass by two-stage percolation process using dilute sulfuric acid and ammonium hydroxide[J]. Korean Journal of Chemical Engineering, 2011,28(11):2156-2162.
doi: 10.1007/s11814-011-0093-6 URL |
[25] |
Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review[J]. Int J Mol Sci, 2008,9(9):1621-1651.
URL pmid: 19325822 |
[26] |
Yang L, Cao J, Jin Y, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw[J]. Bioresource Technology, 2012,124(16):283-291.
doi: 10.1016/j.biortech.2012.08.041 URL |
[27] |
Chen BY, Chen SW, Wang HT. Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion[J]. Biomass and Bioenergy, 2012,39(1):182-191.
doi: 10.1016/j.biombioe.2012.01.012 URL |
[28] | 燕亚平. 微波与碱组合预处理沙柳过程中细胞壁解构及糖化研究[D]. 呼和浩特:内蒙古工业大学, 2018. |
Yan YP. Study on cell wall deconstruction and saccharification during pretreatment of salix[D]. Hohhot:Mongolia Industrial University, 2018. | |
[29] | 李双凤, 王淮, 陈家丽, 等. SO3微热爆/酶催化H2O2氧化联合稀碱预处理稻草秸秆的工艺研究[J]. 广东化工, 2019,14(46):3-5. |
Li SF, Wang H, Chen JL, et al. Study on SO3 micro-thermal explosion/enzyme catalyzed H2O2 oxidation combined with dilute alkali pretreatment of rice straw[J]. Guangdong Chemical Industry, 2019,14(46):3-5. | |
[30] |
Li Q, Gao Y, Wang H, et al. Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification[J]. Bioresource Technology, 2012,125(16):193-199.
doi: 10.1016/j.biortech.2012.08.095 URL |
[31] | 苗林平, 霍丽, 等. 碱性过氧化氢预处理小麦秸秆强化酶解产糖的研究[J]. 纤维素科学与技术, 2018,26(4):49-55. |
Miao LP, Huo L, et al. Effects of mild alkaline hydrogen peroxide(AHP)pretreatment on enzymatic saccharification of wheat straw[J]. Cellulose Science and Technology, 2018,26(4):49-55. | |
[32] |
Hu H, Zhang Y, Liu X, et al. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation[J]. Polymer Bulletin, 2014,71(2):453-464.
doi: 10.1007/s00289-013-1070-5 URL |
[33] |
Zhang Y, Li Q, Su J, et al. A green and efficient technology for the degradation of cellulosic materials:Structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt[J]. Bioresource Technology, 2015,177(22):176-181.
doi: 10.1016/j.biortech.2014.11.085 URL |
[34] |
Zheng J, Rehmann L. Extrusion pretreatment of lignocellulosic biomass:a review[J]. International Journal of Molecular Sciences, 2014,15(10):18967-18984.
doi: 10.3390/ijms151018967 URL pmid: 25334065 |
[35] | Dale BE, Weaver J, Byers FM. Extrusion processing for ammonia fiber explosion(AFEX)[J]. Applied Biochemistry & Biotechnology, 1999,77(3):35-45. |
[36] |
Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009,82(5):815-827.
doi: 10.1007/s00253-009-1883-1 URL |
[37] |
Shuai L, Questell-Santiago YM, Luterbacher JS. A mild biomass pretreatment using γ-valerolactone for concentrated sugar production[J]. Green Chemistry, 2016,18(4):937-943.
doi: 10.1039/C5GC02489G URL |
[38] |
Li S, Zhao C, Yue F, et al. Revealing structural modifications of lignin in acidic γ-Valerolactone-H2O pretreatment[J]. Polymers, 2020,12(1):116-125.
doi: 10.3390/polym12010116 URL |
[39] |
Mellmer MA, Martin Alonso D, et al. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides[J]. Green Chemistry, 2014,16(11):4659-4662.
doi: 10.1039/c4gc01768d URL |
[40] |
Sun SN, Chen X, et al. Pretreatment of Eucalyptus urophylla in γ-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis[J]. Industrial Crops and Products, 2019,132(8):21-28.
doi: 10.1016/j.indcrop.2019.02.004 URL |
[41] |
Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents(DESs)and their applications[J]. Chemical Reviews, 2014,114(21):11060-11082.
doi: 10.1021/cr300162p pmid: 25300631 |
[42] | Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chemical Communications, 2008,14(10):1235-1237. |
[43] |
Chen Z, Jacoby WA, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology, 2019,279:281-286.
doi: S0960-8524(19)30159-2 pmid: 30738354 |
[44] | 王冬梅, 刘云. 低共熔溶剂(DES)分级分离木质纤维素组分新技术[J]. 北京化工大学学报, 2018,45(6):40-47. |
Wang DM, Liu Y. Fractionation of lignocellulose with deep eutectic solvent(DES)[J]. Journal of Beijing University of Chemical Technology, 2018,45(6):40-47. | |
[45] |
Yan YT, et al. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin[J]. Bioresource Technology, 2019,281:359-366.
doi: 10.1016/j.biortech.2019.02.010 URL pmid: 30831515 |
[46] |
Hou, Xue Dan Li, , et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018,249:261-267.
doi: 10.1016/j.biortech.2017.10.019 URL pmid: 29049985 |
[47] |
Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment:Recent developments, challenges and novel opportunities[J]. Biotechnology Advances, 2018,36(8):2032-2050.
doi: S0734-9750(18)30147-2 pmid: 30193965 |
[48] |
Xu GC, Ding JC, Han RZ, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016,203:364-369.
URL pmid: 26597485 |
[49] |
Li T, Lyu G, Liu Y, et al. Deep eutectic solvents(DESs)for the isolation of willow lignin[J]. International Journal of Molecular Sciences, 2017,18(11):2266.
doi: 10.3390/ijms18112266 URL |
[50] |
Kumar AK, Parikh BS, Shah E, et al. Cellulosic ethanol production from green solvent-pretreated rice straw[J]. Biocatalysis and Agricultural Biotechnology, 2016,7:14-23.
doi: 10.1016/j.bcab.2016.04.008 URL |
[51] |
Wahlstrom R, Hiltunen J, et al. Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose:effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis[J]. RSC Advances, 2016,6(72):68100-68110.
doi: 10.1039/C6RA11719H URL |
[52] |
Nai C, Meyer V. From axenic to mixed cultures:technological advances accelerating a paradigm shift in microbiology[J]. Trends in Microbiology, 2017,26(6):2-5.
doi: 10.1016/j.tim.2017.11.006 URL |
[53] |
Shahab RL, Brethauer S, et al. Engineering of ecological niches to create stable artificial consortia for complex biotransformations[J]. Curr Opin Biotechnol, 2020,62:129-136.
doi: 10.1016/j.copbio.2019.09.008 URL pmid: 31671322 |
[54] |
Gao M, Ploessl D, Shao Z. Enhancing the co-utilization of biomass-derived mixed sugars by yeasts[J]. Frontiers in Microbiology, 2019,9:3264.
doi: 10.3389/fmicb.2018.03264 URL pmid: 30723464 |
[55] |
Chappell TC, Nair NU. Co-utilization of hexoses by a microconsortium of sugar-specific E. Coli strains[J]. Biotechnology and Bioengineering, 2017,114(10):2309-2318.
doi: 10.1002/bit.26351 pmid: 28600864 |
[56] |
Verhoeven MD, De VSC, Daran JG, et al. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains[J]. FEMS Yeast Research, 2018, 18(8):DOI: 10.1093/femsyr/foy075.
doi: 10.1093/femsyr/foy086 URL pmid: 30085062 |
[57] |
Liang WS, York W, Lonnie O. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and saccharomyces cerevisiae[J]. Bioresource Technology, 2019,273(1):269-276.
doi: 10.1016/j.biortech.2018.11.016 URL |
[58] |
Wen Z, Minton NP, Zhang Y, et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium[J]. Metabolic Engineering, 2016,39(12):38-48.
doi: 10.1016/j.ymben.2016.10.013 URL |
[59] |
Chi X, Li J, Wang X, et al. Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess[J]. Bioresource Technology, 2018,254(2):115-120.
doi: 10.1016/j.biortech.2018.01.042 URL |
[60] |
Kiyoshi K, Furukawa M, Seyama T, et al. Butanol production from alkali-pretreated rice straw by co-culture of clostridium thermocellum and clostridium saccharoperbutylacetonicum[J]. Bioresource Technology, 2015,186:325-328.
doi: S0960-8524(15)00393-4 pmid: 25818258 |
[61] |
Minty JJ, Singer ME, Scholz SA, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proceedings of the National Academy of Sciences, 2013,110(36):14592-14597.
doi: 10.1073/pnas.1218447110 URL |
[62] |
Rinaldi R, Jastrzebski R, Clough MT, et al. Paving the way for lignin valorisation:recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016,55(29):8164-8215.
doi: 10.1002/anie.201510351 URL pmid: 27311348 |
[63] | Sturgeon MR, Kim S, Lawrence K, et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-Ether linkages:implications for lignin depolymerization in acidic environments[J]. ACS Sustainable Chemistry & Engineering, 2013,2(3):472-485. |
[64] |
Lee CR, Yoon JS, Suh YW, et al. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catalysis Communications, 2012,17:54-58.
doi: 10.1016/j.catcom.2011.10.011 URL |
[65] |
Shuai L, Amiri MT, Questell SYM, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016,354(6):329-333.
doi: 10.1126/science.aaf7810 URL |
[66] |
Wu Lan, Jean BB, Luterbacher JS, et al. Highly selective oxidation and depolymerization of α, γ-diol protected lignin[J]. Angewandte Chemie, 2019,58(9):2649-2654.
doi: 10.1002/anie.201811630 URL pmid: 30600891 |
[67] | 朱盛伟, 展旺, 于鸿飞, 等. 甲酸法绿色分离缅甸黄花梨中木质素和纤维素的研究[J]. 北京化工大学学报, 2019,46(2):57-63. |
Zhu SW, Zhan W, Yu HF, et al. Fractionation of lignin and cellulose from Pterocarpus macarocarpus Kurz using formic acid[J]. Journal of Beijing University of Chemical Technology, 2019,46(2):57-63. | |
[68] | 武小芬, 齐慧, 陈亮, 等. 甲酸分离辐照稻草中纤维素、木质素和木糖的工艺[J]. 辐射研究与辐射工艺学报, 2020,44(3):18-24. |
Wu XF, Qi H, Chen L, et al. Fractionation processing of cellulose, lignin, and xylose from irradiated rice straw using formic acid[J]. Journal of Radiation Research and Radiation Processing, 2020,44(3):18-24. | |
[69] |
Rahimi A, Azarpira A, Kim H, et al. Chemoselective metal-free aerobic alcohol oxidation in lignin[J]. Journal of the American Chemical Society, 2013,135(17):6415-6418.
doi: 10.1021/ja401793n URL pmid: 23570328 |
[70] | 闫磊. 木质素的化学改性与高效利用研究进展[J]. 绿色科技, 2016,82(12):196-200. |
Yan L. Advances of chemical modification and efficient application of lignin[J]. Green Technology, 2016,82(12):196-200. | |
[71] | 杨军艳, 毕宇霆, 吴建新, 等. 木质素化学改性研究进展[J]. 上海应用技术学院学报, 2015(15):29-39. |
Yang JY, Bi YT, Wu JX, et al. Research advances in chemical modification of lignin[J]. Journal of Shanghai Institute of Technology, 2015(15):29-39. | |
[72] |
Zhou H, Xu H, Liu Y. Aerobic oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic acid over Co/Mn-Lignin coordination complexes-derived catalysts[J]. Applied Catalysis B:Environmental, 2019,244:965-973.
doi: 10.1016/j.apcatb.2018.12.046 URL |
[73] |
Zhou H, Hong S, Zhang H, et al. Toward biomass-based single-atom catalysts and plastics:Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols[J]. Applied Catalysis B:Environmental, 2019,256:117767-117775.
doi: 10.1016/j.apcatb.2019.117767 URL |
[74] | 金涛. 我国纤维素乙醇技术发展中的问题及对策[J]. 河南科技, 2018,639(5):46-50. |
Jin T. Problems and countermeasures of the development of cellulosic ethanol technology in China[J]. Henan Science and Technology, 2018,639(5):46-50. | |
[75] | 赵晓勤, 毛开云, 陈大明. 基于专利分析的燃料乙醇技术发展研究[J]. 生物产业技术, 2018,66(4):12-19. |
Zhao XQ, Mao KY, Chen DM. Development of fuel ethanol technology based on patent analysis[J]. Biological Industry Technology, 2018,66(4):12-19. |
[1] | XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.) [J]. Biotechnology Bulletin, 2023, 39(9): 27-39. |
[2] | LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers [J]. Biotechnology Bulletin, 2023, 39(7): 105-112. |
[3] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[4] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[5] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[6] | LIU Na, JIAO Jing-lin, RAO Zheng-hua. Research Progress in the Detection Methods of Short Chain Fatty Acids in Animal Samples [J]. Biotechnology Bulletin, 2022, 38(8): 84-91. |
[7] | LI Xin-yue, ZHANG Jin-fang, XU Xiao-jian, LU Fu-ping, LI Yu. Effects of Spore Formation Related Gene Deletion on Biomass and Extracellular Enzyme Expression of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2021, 37(3): 35-43. |
[8] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[9] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[10] | LIANG Xin-xin, TANG Dan, HUO Yi-xin. Green Biotransformation of Protein-derived Biomass [J]. Biotechnology Bulletin, 2020, 36(12): 216-228. |
[11] | ZHANG Jia-shun, GAO Li-li, MA Jiang-shan, LIU Gao-qiang. Effect of Surfactant on Cellulase Hydrolysis and Its Mechanism [J]. Biotechnology Bulletin, 2019, 35(9): 11-20. |
[12] | ZHANG Dan, WANG Nan, LI Chao, XIE Qi, TANG San-yuan. Sweet Sorghum—a High Efficient and Quality Forage Crop [J]. Biotechnology Bulletin, 2019, 35(5): 2-8. |
[13] | ZHAGN Jing-jie, DUAN Lu-lu, CHENG Wei-lan, JI Chun-li, CUI Hong-li, LI Run-zhi. Algae-bacteria Symbiosis Increases Biomass and Oil Production of Chlorella emersonii [J]. Biotechnology Bulletin, 2019, 35(5): 76-84. |
[14] | GAO Yue, GUO Xiao-peng, YANG Yang, ZHANG Miao-miao, LI Wen-jian, LU Dong. Research Progress of Biobutanol Fermentation [J]. Biotechnology Bulletin, 2018, 34(8): 27-34. |
[15] | LIN Bei, LI Jian-Xiu, LIU Xue-ling. The Effects of By-products of Hydrolyzing Lignocellulose on Ethanol Fermentation and Relevant Countermeasures [J]. Biotechnology Bulletin, 2018, 34(3): 23-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||