Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (10): 148-158.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1606
Previous Articles Next Articles
MA Qi(), LI Ji-lian, XU Shou-zhen, CHEN Hong, LIU Wen-hao, NING Xinzhu(), LIN Hai()
Received:
2021-12-30
Online:
2022-10-26
Published:
2022-11-11
Contact:
NING Xinzhu,LIN Hai
E-mail:qmacotton@163.com;605956642@qq.com;xjlinh@126.com
MA Qi, LI Ji-lian, XU Shou-zhen, CHEN Hong, LIU Wen-hao, NING Xinzhu, LIN Hai. Genetic Analysis of FBA Trait in Upland Cotton with Major Gene Plus Polygenes Mixed Genetic Model[J]. Biotechnology Bulletin, 2022, 38(10): 148-158.
性状 Trait | 最小值 Minimum | 最大值 Maximum | 均值 Mean | 标准差 SD |
---|---|---|---|---|
1-FBA | 52.60 | 63.85 | 57.87Aa | 2.66 |
2-FBA | 50.24 | 60.65 | 55.61Bb | 2.78 |
3-FBA | 48.41 | 58.20 | 53.70Cc | 2.43 |
All-FBA | 50.91 | 59.01 | 55.73Bb | 1.70 |
Table 1 Comparison of FBA in different positions
性状 Trait | 最小值 Minimum | 最大值 Maximum | 均值 Mean | 标准差 SD |
---|---|---|---|---|
1-FBA | 52.60 | 63.85 | 57.87Aa | 2.66 |
2-FBA | 50.24 | 60.65 | 55.61Bb | 2.78 |
3-FBA | 48.41 | 58.20 | 53.70Cc | 2.43 |
All-FBA | 50.91 | 59.01 | 55.73Bb | 1.70 |
性状Trait | 1-FBA | 2-FBA | 3-FBA | All-FBA |
---|---|---|---|---|
1-FBA | 0.191 | 0.059 | 0.652** | |
2-FBA | 0.191 | 0.134 | 0.707** | |
3-FBA | 0.059 | 0.134 | 0.580** | |
All-FBA | 0.652** | 0.707** | 0.580** |
Table 2 Correlation analysis of FBA in different positions
性状Trait | 1-FBA | 2-FBA | 3-FBA | All-FBA |
---|---|---|---|---|
1-FBA | 0.191 | 0.059 | 0.652** | |
2-FBA | 0.191 | 0.134 | 0.707** | |
3-FBA | 0.059 | 0.134 | 0.580** | |
All-FBA | 0.652** | 0.707** | 0.580** |
环境 Environment | 均值±标准差 $\bar{x}$±s | 最小值 Minimum | 最大值 Maximum | 极差 Range | 变异系数 CV/% | 柯尔莫哥洛夫-斯米诺夫正态分布检验 Kolmogorov-Smirnov(K-S)normal distribution test | ||
---|---|---|---|---|---|---|---|---|
Z值 | P | |||||||
E1 | 58.69±3.57 | 47.41 | 70.46 | 23.05 | 6.08 | 0.557 | 0.916 | |
E2 | 56.15±4.13 | 43.20 | 67.87 | 24.67 | 7.36 | 0.734 | 0.654 | |
E3 | 57.95±2.85 | 50.44 | 69.40 | 18.96 | 4.92 | 0.913 | 0.375 | |
E4 | 62.61±2.61 | 55.08 | 70.07 | 14.99 | 4.17 | 0.646 | 0.789 | |
EAll | 58.85±3.30 | 49.03 | 69.45 | 20.42 | 5.63 | 0.744 | 0.637 |
Table 3 Phenotypic statistical analysis of FBA of G. hirsutum under four environments
环境 Environment | 均值±标准差 $\bar{x}$±s | 最小值 Minimum | 最大值 Maximum | 极差 Range | 变异系数 CV/% | 柯尔莫哥洛夫-斯米诺夫正态分布检验 Kolmogorov-Smirnov(K-S)normal distribution test | ||
---|---|---|---|---|---|---|---|---|
Z值 | P | |||||||
E1 | 58.69±3.57 | 47.41 | 70.46 | 23.05 | 6.08 | 0.557 | 0.916 | |
E2 | 56.15±4.13 | 43.20 | 67.87 | 24.67 | 7.36 | 0.734 | 0.654 | |
E3 | 57.95±2.85 | 50.44 | 69.40 | 18.96 | 4.92 | 0.913 | 0.375 | |
E4 | 62.61±2.61 | 55.08 | 70.07 | 14.99 | 4.17 | 0.646 | 0.789 | |
EAll | 58.85±3.30 | 49.03 | 69.45 | 20.42 | 5.63 | 0.744 | 0.637 |
世代群体名称 Generation group name | 个体数 Sum | 均值 Mean /(°) | 方差 Variance /(°) | 标准差 SD | 极差 Range /(°) | 最大值 Max /(°) | 最小值 Min /(°) | 变异系数 CV /% |
---|---|---|---|---|---|---|---|---|
P1 | 80 | 64.05 | 9.43 | 3.07 | 11.79 | 71.82 | 60.03 | 0.05 |
P2 | 80 | 49.57 | 44.16 | 6.65 | 38.78 | 76.09 | 37.31 | 0.13 |
F1 | 30 | 56.86 | 60.13 | 7.75 | 34.01 | 75.21 | 41.2 | 0.14 |
F2 | 200 | 52.15 | 77.85 | 9.76 | 54.4 | 80 | 25.6 | 0.19 |
Table 4 Phenotypic data distribution of FBA in each generation population
世代群体名称 Generation group name | 个体数 Sum | 均值 Mean /(°) | 方差 Variance /(°) | 标准差 SD | 极差 Range /(°) | 最大值 Max /(°) | 最小值 Min /(°) | 变异系数 CV /% |
---|---|---|---|---|---|---|---|---|
P1 | 80 | 64.05 | 9.43 | 3.07 | 11.79 | 71.82 | 60.03 | 0.05 |
P2 | 80 | 49.57 | 44.16 | 6.65 | 38.78 | 76.09 | 37.31 | 0.13 |
F1 | 30 | 56.86 | 60.13 | 7.75 | 34.01 | 75.21 | 41.2 | 0.14 |
F2 | 200 | 52.15 | 77.85 | 9.76 | 54.4 | 80 | 25.6 | 0.19 |
世代群体名称 Generation group name | K-S Z值 K-S Z value | 渐近显著性P值 Asymptotic significance P value |
---|---|---|
P1 | 0.85 | 0.46 |
P2 | 2.23 | 0.00 |
F1 | 0.58 | 0.88 |
F2 | 1.04 | 0.23 |
Table 5 Kolmogorov-Smirnov test of phenotypic data of FBA in different generations
世代群体名称 Generation group name | K-S Z值 K-S Z value | 渐近显著性P值 Asymptotic significance P value |
---|---|---|
P1 | 0.85 | 0.46 |
P2 | 2.23 | 0.00 |
F1 | 0.58 | 0.88 |
F2 | 1.04 | 0.23 |
模型 Model | 极大似然 值 MLV | AIC | 模型Model | 极大似然 值 MLV | AIC | |
---|---|---|---|---|---|---|
1MG-AD | -1308.355 | 2628.711 | MX1-AD-ADI | -1334.866 | 2685.733 | |
1MG-A | -1337.99 | 2685.980 | MX1-AD-AD | -1337.209 | 2688.419 | |
1MG-EAD | -1308.355 | 2626.710 | MX1-A-AD | -1338.488 | 2688.977 | |
1MG-NCD | -1308.488 | 2626.977 | MX1-EAD-AD | -1337.207 | 2686.414 | |
2MG-ADI | -1335.17 | 2692.340 | MX1-NCD-AD | -1339.054 | 2690.107 | |
2MG-AD | -1337.658 | 2689.315 | MX2-ADI-ADI | -1334.364 | 2692.727 | |
2MG-A | -1399.677 | 2809.353 | MX2-ADI-AD | -1334.793 | 2687.586 | |
2MG-EA | -1308.349 | 2624.698 | MX2-AD-AD | -1336.842 | 2683.684 | |
2MG-CD | -1355.972 | 2721.944 | MX2-A-AD | -1338.092 | 2682.185 | |
2MG-EAD | -1308.408 | 2624.816 | MX2-EA-AD | -1337.907 | 2679.814 | |
PG-ADI | -1336.109 | 2684.218 | MX2-CD-AD | -1336.911 | 2679.822 | |
PG-AD | -1340.922 | 2691.844 | MX2-EAD-AD | -1336.859 | 2677.718 |
Table 6 Max-likelihood-value(MLV)and Akaike’s in-formation criterion(AIC)of 24 different genetic models
模型 Model | 极大似然 值 MLV | AIC | 模型Model | 极大似然 值 MLV | AIC | |
---|---|---|---|---|---|---|
1MG-AD | -1308.355 | 2628.711 | MX1-AD-ADI | -1334.866 | 2685.733 | |
1MG-A | -1337.99 | 2685.980 | MX1-AD-AD | -1337.209 | 2688.419 | |
1MG-EAD | -1308.355 | 2626.710 | MX1-A-AD | -1338.488 | 2688.977 | |
1MG-NCD | -1308.488 | 2626.977 | MX1-EAD-AD | -1337.207 | 2686.414 | |
2MG-ADI | -1335.17 | 2692.340 | MX1-NCD-AD | -1339.054 | 2690.107 | |
2MG-AD | -1337.658 | 2689.315 | MX2-ADI-ADI | -1334.364 | 2692.727 | |
2MG-A | -1399.677 | 2809.353 | MX2-ADI-AD | -1334.793 | 2687.586 | |
2MG-EA | -1308.349 | 2624.698 | MX2-AD-AD | -1336.842 | 2683.684 | |
2MG-CD | -1355.972 | 2721.944 | MX2-A-AD | -1338.092 | 2682.185 | |
2MG-EAD | -1308.408 | 2624.816 | MX2-EA-AD | -1337.907 | 2679.814 | |
PG-ADI | -1336.109 | 2684.218 | MX2-CD-AD | -1336.911 | 2679.822 | |
PG-AD | -1340.922 | 2691.844 | MX2-EAD-AD | -1336.859 | 2677.718 |
模型 Model | 世代 Generation | 统计量Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
U12 | P(U12) | U22 | P(U22) | U32 | P(U32) | nW2 | Dn | |||
1MG-EAD | P1 | 0.5393 | 0.4627 | 0.3780 | 0.5387 | 0.1482 | 0.7003 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6127 | 0.4338 | 2.5738 | 0.1086 | 11.4620 | 0.0007* | 1.0116* | 0.2488 | ||
F2 | 0.0000 | 0.9997 | 0.0002 | 0.9878 | 0.0035 | 0.9526 | 0.0018 | 0.0522 | ||
1MG-NCD | P1 | 0.5393 | 0.4627 | 0.3780 | 0.5387 | 0.1482 | 0.7003 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6124 | 0.4339 | 2.5737 | 0.1087 | 11.4657 | 0.0007* | 1.0118* | 0.2488 | ||
F2 | 0.0014 | 0.9700 | 0.0002 | 0.9879 | 0.0072 | 0.9324 | 0.0017 | 0.0524 | ||
2MG-EA | P1 | 0.5391 | 0.4628 | 0.3778 | 0.5388 | 0.1484 | 0.7001 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6126 | 0.4338 | 2.5738 | 0.1086 | 11.4638 | 0.0007* | 1.0118* | 0.2488 | ||
F2 | 0.0001 | 0.9919 | 0.0000 | 0.9951 | 0.0002 | 0.9880 | 0.0018 | 0.0534 | ||
2MG-EAD | P1 | 0.5391 | 0.4628 | 0.3777 | 0.5388 | 0.1483 | 0.7001 | 0.0574 | 0.0948 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6127 | 0.4338 | 2.5739 | 0.1086 | 11.4634 | 0.0007* | 1.0116* | 0.2488 | ||
F2 | 0.0006 | 0.9803 | 0.0020 | 0.9644 | 0.0069 | 0.9339 | 0.0021 | 0.0557 |
Table 7 Fitness test for candidate genetic models for FBA
模型 Model | 世代 Generation | 统计量Statistics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
U12 | P(U12) | U22 | P(U22) | U32 | P(U32) | nW2 | Dn | |||
1MG-EAD | P1 | 0.5393 | 0.4627 | 0.3780 | 0.5387 | 0.1482 | 0.7003 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6127 | 0.4338 | 2.5738 | 0.1086 | 11.4620 | 0.0007* | 1.0116* | 0.2488 | ||
F2 | 0.0000 | 0.9997 | 0.0002 | 0.9878 | 0.0035 | 0.9526 | 0.0018 | 0.0522 | ||
1MG-NCD | P1 | 0.5393 | 0.4627 | 0.3780 | 0.5387 | 0.1482 | 0.7003 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6124 | 0.4339 | 2.5737 | 0.1087 | 11.4657 | 0.0007* | 1.0118* | 0.2488 | ||
F2 | 0.0014 | 0.9700 | 0.0002 | 0.9879 | 0.0072 | 0.9324 | 0.0017 | 0.0524 | ||
2MG-EA | P1 | 0.5391 | 0.4628 | 0.3778 | 0.5388 | 0.1484 | 0.7001 | 0.0574 | 0.0949 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6126 | 0.4338 | 2.5738 | 0.1086 | 11.4638 | 0.0007* | 1.0118* | 0.2488 | ||
F2 | 0.0001 | 0.9919 | 0.0000 | 0.9951 | 0.0002 | 0.9880 | 0.0018 | 0.0534 | ||
2MG-EAD | P1 | 0.5391 | 0.4628 | 0.3777 | 0.5388 | 0.1483 | 0.7001 | 0.0574 | 0.0948 | |
P2 | 0.0000 | 0.9975 | 0.0233 | 0.8786 | 0.3584 | 0.5494 | 0.0045 | 0.1045 | ||
F1 | 0.6127 | 0.4338 | 2.5739 | 0.1086 | 11.4634 | 0.0007* | 1.0116* | 0.2488 | ||
F2 | 0.0006 | 0.9803 | 0.0020 | 0.9644 | 0.0069 | 0.9339 | 0.0021 | 0.0557 |
一阶遗传参数 lst order genetic parameter | 果枝夹角 Fruit branch angle | 二阶遗传参数 2nd order genetic parameter | 果枝夹角 Fruit branch angle | |
---|---|---|---|---|
m | 56.38 | σ2mg | 85.90 | |
da(d) | 3.65 | h2mg /% | 90.22 | |
db | / | σ2pg | / | |
ha | / | h2pg /% | / | |
hb | / | |||
i | / | |||
jab | / | |||
jba | / | |||
l | / | |||
[d] | / | |||
[h] | / |
Table 8 Estimation of genetic parameters of FBA under its optimal genetic model
一阶遗传参数 lst order genetic parameter | 果枝夹角 Fruit branch angle | 二阶遗传参数 2nd order genetic parameter | 果枝夹角 Fruit branch angle | |
---|---|---|---|---|
m | 56.38 | σ2mg | 85.90 | |
da(d) | 3.65 | h2mg /% | 90.22 | |
db | / | σ2pg | / | |
ha | / | h2pg /% | / | |
hb | / | |||
i | / | |||
jab | / | |||
jba | / | |||
l | / | |||
[d] | / | |||
[h] | / |
[1] | 喻树迅, 张雷, 冯文娟. 快乐植棉——中国棉花生产的发展方向[J]. 棉花学报, 2015, 27(3):283-290. |
Yu SX, Zhang L, Feng WJ. Easy and enjoyable cotton cultivation:developments in China’s cotton production[J]. Cotton Sci, 2015, 27(3):283-290. | |
[2] |
Su JJ, Wang CX, Ma Q, et al. An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton[J]. BMC Plant Biol, 2020, 20(1):416.
doi: 10.1186/s12870-020-02613-y pmid: 32894064 |
[3] |
Sun ZW, Wang XF, Liu ZW, et al. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton[J]. Theor Appl Genet, 2018, 131(11):2413-2425.
doi: 10.1007/s00122-018-3162-y pmid: 30132023 |
[4] |
Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nat Genet, 2017, 49(7):1089-1098.
doi: 10.1038/ng.3887 pmid: 28581501 |
[5] |
Kumar P, Singh R, Lubbers EL, et al. Mapping and validation of fiber strength quantitative trait loci on chromosome 24 in upland cotton[J]. Crop Sci, 2012, 52(3):1115-1122.
doi: 10.2135/cropsci2011.09.0524 URL |
[6] | Wang BH, Wu YT, Huang NT, et al. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers[J]. Yi Chuan Xue Bao, 2006, 33(2):161-170. |
[7] |
Su JJ, Li LB, Zhang C, et al. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton[J]. Theor Appl Genet, 2018, 131(6):1299-1314.
doi: 10.1007/s00122-018-3079-5 pmid: 29497767 |
[8] | 刘巧, 王园园, 张雪敏, 等. 不同生态环境下陆地棉株型性状与皮棉产量的关系[J]. 西南农业学报, 2021, 34(5):1101-1105. |
Liu Q, Wang YY, Zhang XM, et al. Relationship between plant type traits and lint yield in upland cotton in different ecological environments[J]. Southwest China J Agric Sci, 2021, 34(5):1101-1105. | |
[9] | 盖钧镒, 管荣展, 王建康. 植物数量性状QTL体系检测的遗传试验方法[J]. 世界科技研究与发展, 1999, 21(1):34-40. |
Gai JY, Guan RZ, Wang JK. Methods of genetic experiments for the detection of QTL system in plants[J]. World Sci Tech R D, 1999, 21(1):34-40. | |
[10] | 李成奇, 王清连, 董娜, 等. 陆地棉品种百棉1号主要株型性状的遗传研究[J]. 棉花学报, 2010, 22(5):415-421. |
Li CQ, Wang QL, Dong N, et al. Quantitative inheritance for main plant architecture traits of upland cotton variety baimian 1[J]. Cotton Sci, 2010, 22(5):415-421. | |
[11] | 盖钧镒. 植物数量性状遗传体系的分离分析方法研究[J]. 遗传, 2005, 27(1):130-136. |
Gai JY. Segregation analysis of genetic system of quantitative traits in plants[J]. Hered Beijing, 2005, 27(1):130-136. | |
[12] |
江建华, 张武汉, 党小景, 等. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7):1215-1227.
doi: 10.3724/SP.J.1006.2021.02057 |
Jiang JH, Zhang WH, Dang XJ, et al. Genetic analysis of Stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice(Oryza sativa L.)[J]. Acta Agron Sin, 2021, 47(7):1215-1227.
doi: 10.3724/SP.J.1006.2021.02057 |
|
[13] | 江建华, 党小景, 姚文豪, 等. 水稻核不育系4个柱头性状的遗传分析[J]. 植物学报, 2021, 56(3):284-295. |
Jiang JH, Dang XJ, Yao WH, et al. Genetic analysis of four Stigma traits with genic male sterile line in rice(Oryza sativa)[J]. Chin Bull Bot, 2021, 56(3):284-295. | |
[14] | 解松峰, 吉万全, 王长有, 等. 小麦穗部性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2019, 52(24):4437-4452. |
Xie SF, Ji WQ, Wang CY, et al. Genetic analysis of panicle related traits in wheat with major gene plus polygenes mixed model[J]. Sci Agric Sin, 2019, 52(24):4437-4452. | |
[15] | 朱欣果, 万洪深, 李俊, 等. 人工合成小麦育种优势的主基因+多基因混合遗传分析[J]. 南京农业大学学报, 2018, 41(4):625-632. |
Zhu XG, Wan HS, Li J, et al. Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat[J]. J Nanjing Agric Univ, 2018, 41(4):625-632. | |
[16] | 秦利, 刘华, 张新友, 等. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析[J]. 中国油料作物学报, 2021, 43(4):590-599. |
Qin L, Liu H, Zhang XY, et al. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population[J]. Chin J Oil Crop Sci, 2021, 43(4):590-599. | |
[17] | 牟大林, 韩笑, 李雪莹, 等. 花生主要品质性状的主基因+多基因遗传分析[J]. 花生学报, 2021, 50(1):41-44, 49. |
Mu DL, Han X, Li XY, et al. Genetic analysis of major gene plus polygene on main quality traits in peanut[J]. J Peanut Sci, 2021, 50(1):41-44, 49. | |
[18] | 张毛宁, 黄冰艳, 苗利娟, 等. 巢式杂交分离群体的花生籽仁性状的主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(13):2916-2939. |
Zhang MN, Huang BY, Miao LJ, et al. Genetic analysis of peanut kernel traits in a nested-crossing population by major gene plus polygenes mixed model[J]. Sci Agric Sin, 2021, 54(13):2916-2939. | |
[19] | 姜南, 王淇, 张默, 等. 玉米苗期抗旱性状的主基因和多基因遗传分析[J]. 分子植物育种, 2021, 19(3):881-888. |
Jiang N, Wang Q, Zhang M, et al. Genetic analysis of major genes and multigenes in drought resistance traits of maize seedlings[J]. Mol Plant Breed, 2021, 19(3):881-888. | |
[20] | 王聪, 马青美, 郭新梅, 等. 玉米茎秆抗倒伏相关性状的遗传效应分析[J]. 玉米科学, 2021, 29(4):9-17. |
Wang C, Ma QM, Guo XM, et al. Genetic effects analysis of stem lodging resistance traits in maize[J]. J Maize Sci, 2021, 29(4):9-17. | |
[21] | 周清元, 崔翠, 阴涛, 等. 甘蓝型油菜角果长度的主基因+多基因混合遗传模型[J]. 作物学报, 2014, 40(8):1493-1500. |
Zhou QY, Cui C, Yin T, et al. Genetic analysis of silique length using mixture model of major gene plus polygene in Brassica napus L[J]. Acta Agron Sin, 2014, 40(8):1493-1500.
doi: 10.3724/SP.J.1006.2014.01493 URL |
|
[22] | 龙卫华, 浦惠明, 高建芹, 等. 油菜高油酸种质的创建及高油酸性状遗传与生理特性的分析[J]. 中国农业科学, 2021, 54(2):261-270. |
Long WH, Pu HM, Gao JQ, et al. Creation of high-oleic(HO)canola germplasm and the genetic and physiological analysis on HO trait[J]. Sci Agric Sin, 2021, 54(2):261-270. | |
[23] | 徐小军, 梁长志, 刘海英, 等. 甜瓜苗期耐冷性的多世代联合遗传分析[J]. 农业生物技术学报, 2020, 28(3):420-428. |
Xu XJ, Liang CZ, Liu HY, et al. Joint multi-generations genetic analysis on chilling tolerance of melon(Cucumis melo)seedlings[J]. J Agric Biotechnol, 2020, 28(3):420-428. | |
[24] |
崔月, 陆建农, 施玉珍, 等. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7):1111-1118.
doi: 10.3724/SP.J.1006.2019.84127 |
Cui Y, Lu JN, Shi YZ, et al. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model[J]. Acta Agron Sin, 2019, 45(7):1111-1118. | |
[25] | 王斌, 王利民, 张建平, 等. 胡麻RIL群体苗期抗旱性状的主基因+多基因遗传分析[J]. 干旱地区农业研究, 2018, 36(5):14-20. |
Wang B, Wang LM, Zhang JP, et al. Genetic analysis of drought resistance using major gene plus polygene methods of oil flax RILs population at seedling stage[J]. Agric Res Arid Areas, 2018, 36(5):14-20. | |
[26] | 赵树琪, 庞朝友, 魏恒玲, 等. 陆地棉早熟性状多世代联合遗传分析[J]. 棉花学报, 2017, 29(2):119-127. |
Zhao SQ, Pang CY, Wei HL, et al. Genetic inheritance of earliness traits in upland cotton(Gossypium hirsutum L.)inferred by joint analysis of multiple generations[J]. Cotton Sci, 2017, 29(2):119-127. | |
[27] | 田锋, 范术丽, 魏恒玲, 等. 短季棉生育期性状的遗传分析[J]. 新疆农业科学, 2017, 54(2):197-205. |
Tian F, Fan SL, Wei HL, et al. Genetic analysis of growth traits in short season cotton[J]. Xinjiang Agric Sci, 2017, 54(2):197-205. | |
[28] | 冯常辉, 张友昌, 王孝刚, 等. 陆地棉现蕾期和开花期性状的遗传分析[J]. 分子植物育种, 2020, 18(14):4747-4753. |
Feng CH, Zhang YC, Wang XG, et al. Genetic analysis of squaring and flowering time in upland cotton[J]. Mol Plant Breed, 2020, 18(14):4747-4753. | |
[29] | 马雪霞, 丁业掌, 蒋峰, 等. 亚洲棉纤维品质和产量性状的主基因与多基因遗传分析[J]. 植物遗传资源学报, 2008, 9(2):212-217. |
Ma XX, Ding YZ, Jiang F, et al. Major genes and polygene genetic analysis of fiber quality and yield traits in asiatic cotton(Gossypium arboreum)[J]. J Plant Genet Resour, 2008, 9(2):212-217. | |
[30] | 李成奇, 王清连, 张金宝, 等. 高产陆地棉百棉1号产量性状的主基因+多基因遗传分析[J]. 河南农业科学, 2010, 39(8):43-48. |
Li CQ, Wang QL, Zhang JB, et al. Major gene plus polygene inheritance analysis for yield traits of high yield variety baimian 1 in upland cotton(Gossypium hirsutum L.)[J]. J Henan Agric Sci, 2010, 39(8):43-48. | |
[31] | 张华崇, 张文蔚, 简桂良, 等. 中植棉2号抗黄萎病的主基因+多基因遗传特性分析[J]. 棉花学报, 2016, 28(5):513-518. |
Zhang HC, Zhang WW, Jian GL, et al. Genetic analysis of Verticillium wilt resistance in an upland cotton cultivar Zhongzhimian 2 with the major gene plus polygene model[J]. Cotton Sci, 2016, 28(5):513-518. | |
[32] | 龚举武, 刘爱英, 李俊文, 等. 陆地棉衣分性状的主基因-多基因遗传分析[J]. 棉花学报, 2019, 31(3):192-200. |
Gong JW, Liu AY, Li JW, et al. Major gene plus polygene genetic analysis of lint percent in upland cotton[J]. Cotton Sci, 2019, 31(3):192-200. | |
[33] | 狄佳春, 陈旭升, 赵亮, 等. 利用主基因+多基因混合遗传分析解析陆地棉铃重与铃壳率杂种优势的遗传基础[J]. 棉花学报, 2016, 28(2):115-121. |
Di JC, Chen XS, Zhao L, et al. Genetic foundation of heterosis for boll weight and shell ratio in upland cotton(Gossypium hirsutum L.)using mixed major-genes plus polygenes inheritance analysis[J]. Cotton Sci, 2016, 28(2):115-121. | |
[34] | 龚举武, 刘爱英, 段丽, 等. 不同环境下‘中棉所70’RIL群体棉铃重的主基因+多基因遗传分析[J]. 中国农学通报, 2019, 35(15):128-137. |
Gong JW, Liu AY, Duan L, et al. Major gene + polygene genetic analysis of boll weight in RIL population of ‘CCRI70’ under various environments[J]. Chin Agric Sci Bull, 2019, 35(15):128-137. | |
[35] | 刘雅辉, 王秀萍, 李强, 等. 棉花苗期耐盐性主基因和多基因混合遗传分析[J]. 西北农业学报, 2015, 24(8):57-61. |
Liu YH, Wang XP, Li Q, et al. Mixed inheritance analysis of salt tolerance in cotton seedling stage[J]. Acta Agric Boreali Occidentalis Sin, 2015, 24(8):57-61. | |
[36] | 张培通, 朱协飞, 郭旺珍, 等. 泗棉3号理想株型的遗传及分子标记研究[J]. 棉花学报, 2006, 18(1):13-18. |
Zhang PT, Zhu XF, Guo WZ, et al. Inheritance and QTLs tagging for ideal plant architecture of Simian 3 using molecular markers[J]. Cotton Sci, 2006, 18(1):13-18. | |
[37] | 张朝军, 王晔, 王玉芬, 等. 棉花叶柄分化率主基因+多基因混合遗传分析[J]. 棉花学报, 2012, 24(1):3-9. |
Zhang CJ, Wang Y, Wang YF, et al. Mixed major gene and polygene inheritance analysis of embryogenesis callus induction ratio in upland cotton mature leaf petioles as explants[J]. Cotton Sci, 2012, 24(1):3-9. | |
[38] | 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系[M]. 北京: 科学出版社, 2003. |
Gai JY, Zhang YM, Wang JK. Genetic System of Quantitative Traits in Plants[M]. Beijing: Science Press, 2003. | |
[39] | 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报, 2013, 36(6):1-6. |
Cao XW, Liu B, Zhang YM. SEA:a software package of segregation analysis of quantitative traits in plants[J]. J Nanjing Agric Univ, 2013, 36(6):1-6. | |
[40] |
周希萌, 付春, 马长乐, 等. 作物分枝的分子调控研究进展[J]. 生物技术通报, 2021, 37(3):107-114.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0906 |
Zhou XM, Fu C, Ma CL, et al. Research progress of molecular regulation of branching of crops[J]. Biotechnol Bull, 2021, 37(3):107-114. | |
[41] |
Dong HJ, Zhao H, Xie WB, et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genet, 2016, 12(11):e1006412.
doi: 10.1371/journal.pgen.1006412 URL |
[42] |
Kuai J, Sun YY, Zuo QS, et al. The yield of mechanically harvested rapeseed(Brassica napus L.)can be increased by optimum plant density and row spacing[J]. Sci Rep, 2015, 5:18835.
doi: 10.1038/srep18835 pmid: 26686007 |
[43] | 陈民志, 杨延龙, 王宇轩, 等. 新疆早熟陆地棉品种更替过程中的株型特征及主要经济性状的演变[J]. 中国农业科学, 2019, 52(19):3279-3290. |
Chen MZ, Yang YL, Wang YX, et al. Plant type characteristics and evolution of main economic characters in early maturing upland cotton cultivar replacement in Xinjiang[J]. Sci Agric Sin, 2019, 52(19):3279-3290. | |
[44] |
Doust AN. Grass architecture:genetic and environmental control of branching[J]. Curr Opin Plant Biol, 2007, 10(1):21-25.
doi: 10.1016/j.pbi.2006.11.015 URL |
[45] | 杨信程, 苏江硕, 吴洋洋, 等. 切花小菊主要分枝性状的混合遗传分析[J]. 南京农业大学学报, 2018, 41(3):440-446. |
Yang XC, Su JS, Wu YY, et al. Mixed inheritance analysis of branching traits in spray cut chrysanthemum[J]. J Nanjing Agric Univ, 2018, 41(3):440-446. | |
[46] | 齐振宇, 李俊星, 邹晓霞, 等. 甜瓜株型性状的遗传分析[J]. 农业生物技术学报, 2015, 23(3):302-310. |
Qi ZY, Li JX, Zou XX, et al. Genetic analysis of plant architecture traits in melon(Cucumis melo L.)[J]. J Agric Biotechnol, 2015, 23(3):302-310. |
[1] | WANG Yi-fan, HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang. Synthesis and Character Identification of Allohexaploid Between Gossypium hirsutum and G. gossypioides [J]. Biotechnology Bulletin, 2023, 39(5): 168-176. |
[2] | ZHAO Guo-long, LIN Chun-jing, JIN Dong-chun, ZHANG Chun-bao. Advances in Restorer Genes for Fertility on Cytoplasmic Male Sterility in Major Crops [J]. Biotechnology Bulletin, 2020, 36(1): 116-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||