Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (2): 263-273.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0689
Previous Articles Next Articles
QU Chun-juan1(), ZHU Yue1,2, JIANG Chen1, QU Ming-jing1, WANG Xiang-yu3(), LI Xiao1()
Received:
2022-06-04
Online:
2023-02-26
Published:
2023-03-07
QU Chun-juan, ZHU Yue, JIANG Chen, QU Ming-jing, WANG Xiang-yu, LI Xiao. Whole Mitochondrial Genome and Phylogeny Analysis of Anomala corpulenta[J]. Biotechnology Bulletin, 2023, 39(2): 263-273.
基因 Gene | 位置 Position/bp | 编码链 Coding strand | 长度 Length/bp | 起始密码子 Start codon | 终止密码子 Stop codon | 反密码子 Anticodon | 基因间隔 Intergenic length/bp |
---|---|---|---|---|---|---|---|
tRNAIle | 915-979 | J | 65 | GAT | - | ||
tRNAGln | 976-1 045 | N | 70 | TTG | -4 | ||
tRNAMet | 1 044-1 113 | J | 70 | CAT | -2 | ||
nad2 | 1 113-2 121 | J | 1 009 | ATG | TAA | -1 | |
tRNATrp | 2 135-2 203 | J | 69 | TCA | 13 | ||
tRNACys | 2 195-2 257 | N | 63 | GCA | -9 | ||
tRNATyr | 2 257-2 322 | N | 66 | GTA | -1 | ||
cox1 | 2 314-3 859 | J | 1 546 | ATT | TAA | -9 | |
tRNALeu(UUR) | 3 854-3 919 | J | 66 | TAA | -6 | ||
cox2 | 3 919-4 627 | J | 709 | ATC | TAA | -1 | |
tRNALys | 4 607-4 678 | J | 72 | CTT | -21 | ||
tRNAAsp | 4 680-4 745 | J | 66 | GTC | 1 | ||
atp8 | 4 745-4 901 | J | 157 | ATT | TAA | -1 | |
atp6 | 4 897-5 569 | J | 673 | ATA | TAA | -5 | |
cox3 | 5 568-6 356 | J | 789 | ATG | TA(A) | -2 | |
tRNAGly | 6 355-6 420 | J | 66 | TCC | -2 | ||
nad3 | 6 420-6 774 | J | 355 | ATC | TAG | -1 | |
tRNAAla | 6 772-6 836 | J | 65 | TGC | -2 | ||
tRNAArg | 6 836-6 901 | J | 66 | TCG | -1 | ||
tRNAAsn | 6 901-6 966 | J | 66 | GTT | -1 | ||
tRNASer(AGN) | 6 966-7 033 | J | 68 | TCT | -1 | ||
tRNAGlu | 7 033-7 098 | J | 66 | TTC | -1 | ||
tRNAPhe | 7 096-7 163 | N | 68 | GAA | -3 | ||
nad5 | 7 162-8 878 | N | 1 717 | ATT | TAA | -2 | |
tRNAHis | 8 881-8 944 | N | 64 | GTG | 2 | ||
nad4 | 8 943-10 280 | N | 1 338 | ATG | TA(A) | -2 | |
nad4l | 10 273-10 606 | N | 334 | TTG | TAA | -8 | |
tRNAThr | 10 566-10 631 | J | 66 | TGT | -41 | ||
tRNAPro | 10 631-10 696 | N | 66 | TGG | -1 | ||
nad6 | 10 697-11 201 | J | 505 | ATC | TAA | 0 | |
cytb | 11 200-12 343 | J | 1 144 | ATG | TAG | -2 | |
tRNASer(UCN) | 12 341-12 406 | J | 66 | TGA | -3 | ||
nad1 | 12 422-13 370 | N | 949 | ATA | TAG | 15 | |
tRNALeu(CUN) | 13 374-13 440 | N | 67 | TAG | 3 | ||
16S rRNA | 13 404-14 753 | N | 1 350 | -37 | |||
tRNAVal | 14 731-14 801 | N | 71 | TAC | -23 | ||
12S rRNA | 14 801-15 599 | N | 800 | -1 | |||
Control Region | 15 600-16 673 | J | 1 074 |
Table 1 Locations and start/stop codons of mitochondrial genes in A. corpulenta
基因 Gene | 位置 Position/bp | 编码链 Coding strand | 长度 Length/bp | 起始密码子 Start codon | 终止密码子 Stop codon | 反密码子 Anticodon | 基因间隔 Intergenic length/bp |
---|---|---|---|---|---|---|---|
tRNAIle | 915-979 | J | 65 | GAT | - | ||
tRNAGln | 976-1 045 | N | 70 | TTG | -4 | ||
tRNAMet | 1 044-1 113 | J | 70 | CAT | -2 | ||
nad2 | 1 113-2 121 | J | 1 009 | ATG | TAA | -1 | |
tRNATrp | 2 135-2 203 | J | 69 | TCA | 13 | ||
tRNACys | 2 195-2 257 | N | 63 | GCA | -9 | ||
tRNATyr | 2 257-2 322 | N | 66 | GTA | -1 | ||
cox1 | 2 314-3 859 | J | 1 546 | ATT | TAA | -9 | |
tRNALeu(UUR) | 3 854-3 919 | J | 66 | TAA | -6 | ||
cox2 | 3 919-4 627 | J | 709 | ATC | TAA | -1 | |
tRNALys | 4 607-4 678 | J | 72 | CTT | -21 | ||
tRNAAsp | 4 680-4 745 | J | 66 | GTC | 1 | ||
atp8 | 4 745-4 901 | J | 157 | ATT | TAA | -1 | |
atp6 | 4 897-5 569 | J | 673 | ATA | TAA | -5 | |
cox3 | 5 568-6 356 | J | 789 | ATG | TA(A) | -2 | |
tRNAGly | 6 355-6 420 | J | 66 | TCC | -2 | ||
nad3 | 6 420-6 774 | J | 355 | ATC | TAG | -1 | |
tRNAAla | 6 772-6 836 | J | 65 | TGC | -2 | ||
tRNAArg | 6 836-6 901 | J | 66 | TCG | -1 | ||
tRNAAsn | 6 901-6 966 | J | 66 | GTT | -1 | ||
tRNASer(AGN) | 6 966-7 033 | J | 68 | TCT | -1 | ||
tRNAGlu | 7 033-7 098 | J | 66 | TTC | -1 | ||
tRNAPhe | 7 096-7 163 | N | 68 | GAA | -3 | ||
nad5 | 7 162-8 878 | N | 1 717 | ATT | TAA | -2 | |
tRNAHis | 8 881-8 944 | N | 64 | GTG | 2 | ||
nad4 | 8 943-10 280 | N | 1 338 | ATG | TA(A) | -2 | |
nad4l | 10 273-10 606 | N | 334 | TTG | TAA | -8 | |
tRNAThr | 10 566-10 631 | J | 66 | TGT | -41 | ||
tRNAPro | 10 631-10 696 | N | 66 | TGG | -1 | ||
nad6 | 10 697-11 201 | J | 505 | ATC | TAA | 0 | |
cytb | 11 200-12 343 | J | 1 144 | ATG | TAG | -2 | |
tRNASer(UCN) | 12 341-12 406 | J | 66 | TGA | -3 | ||
nad1 | 12 422-13 370 | N | 949 | ATA | TAG | 15 | |
tRNALeu(CUN) | 13 374-13 440 | N | 67 | TAG | 3 | ||
16S rRNA | 13 404-14 753 | N | 1 350 | -37 | |||
tRNAVal | 14 731-14 801 | N | 71 | TAC | -23 | ||
12S rRNA | 14 801-15 599 | N | 800 | -1 | |||
Control Region | 15 600-16 673 | J | 1 074 |
基因Gene | A/% | T/% | G/% | C/% | (A+T)/% | (G+C)/% | AT-skew | GC-skew |
---|---|---|---|---|---|---|---|---|
全基因组 Whole genome | 38.97 | 36.89 | 9.21 | 14.93 | 75.87 | 24.13 | 0.027 | -0.237 |
13PCGs | 32.16 | 42.71 | 12.25 | 12.88 | 74.87 | 25.13 | -0.141 | -0.025 |
22tRNAs | 38.79 | 37.75 | 13.46 | 10.01 | 76.54 | 23.46 | 0.014 | 0.147 |
2rRNAs | 36.41 | 39.39 | 16.76 | 7.45 | 75.79 | 24.21 | -0.039 | 0.385 |
Control region | 41.99 | 39.01 | 4.19 | 14.80 | 81.01 | 18.99 | 0.037 | -0.559 |
16S rRNA | 36.84 | 40.85 | 15.64 | 6.67 | 77.69 | 22.31 | 0.052 | 0.402 |
12S rRNA | 35.67 | 36.92 | 18.65 | 8.76 | 72.59 | 27.41 | -0.017 | 0.361 |
nad2 | 35.52 | 41.27 | 7.04 | 16.17 | 76.79 | 23.21 | -0.075 | -0.393 |
cox1 | 31.26 | 37.35 | 14.24 | 17.15 | 68.61 | 31.39 | -0.089 | -0.093 |
cox2 | 34.32 | 38.14 | 11.72 | 15.82 | 72.46 | 27.54 | -0.053 | -0.149 |
atp8 | 39.10 | 37.82 | 8.33 | 14.74 | 76.92 | 23.08 | 0.017 | -0.278 |
atp6 | 31.99 | 42.26 | 11.16 | 14.58 | 74.26 | 25.74 | -0.138 | -0.133 |
cox3 | 31.22 | 40.23 | 13.07 | 15.48 | 71.45 | 28.55 | -0.127 | -0.084 |
nad3 | 32.20 | 44.07 | 9.89 | 13.84 | 76.27 | 23.73 | -0.158 | -0.166 |
nad5 | 31.59 | 45.98 | 13.29 | 9.15 | 77.56 | 22.44 | -0.186 | 0.184 |
nad4 | 30.96 | 46.67 | 14.06 | 8.30 | 77.64 | 22.36 | -0.202 | 0.258 |
nad4l | 30.33 | 50.75 | 13.21 | 5.71 | 81.08 | 18.92 | -0.252 | 0.396 |
nad6 | 37.50 | 43.45 | 6.55 | 12.50 | 80.95 | 19.05 | -0.074 | -0.312 |
cytb | 32.46 | 39.63 | 11.90 | 16.01 | 72.09 | 27.91 | -0.099 | -0.147 |
nad1 | 28.38 | 48.00 | 15.30 | 8.33 | 76.37 | 23.63 | -0.257 | 0.295 |
Table 2 Base composition in the mitochondrial genome of A. corpulenta
基因Gene | A/% | T/% | G/% | C/% | (A+T)/% | (G+C)/% | AT-skew | GC-skew |
---|---|---|---|---|---|---|---|---|
全基因组 Whole genome | 38.97 | 36.89 | 9.21 | 14.93 | 75.87 | 24.13 | 0.027 | -0.237 |
13PCGs | 32.16 | 42.71 | 12.25 | 12.88 | 74.87 | 25.13 | -0.141 | -0.025 |
22tRNAs | 38.79 | 37.75 | 13.46 | 10.01 | 76.54 | 23.46 | 0.014 | 0.147 |
2rRNAs | 36.41 | 39.39 | 16.76 | 7.45 | 75.79 | 24.21 | -0.039 | 0.385 |
Control region | 41.99 | 39.01 | 4.19 | 14.80 | 81.01 | 18.99 | 0.037 | -0.559 |
16S rRNA | 36.84 | 40.85 | 15.64 | 6.67 | 77.69 | 22.31 | 0.052 | 0.402 |
12S rRNA | 35.67 | 36.92 | 18.65 | 8.76 | 72.59 | 27.41 | -0.017 | 0.361 |
nad2 | 35.52 | 41.27 | 7.04 | 16.17 | 76.79 | 23.21 | -0.075 | -0.393 |
cox1 | 31.26 | 37.35 | 14.24 | 17.15 | 68.61 | 31.39 | -0.089 | -0.093 |
cox2 | 34.32 | 38.14 | 11.72 | 15.82 | 72.46 | 27.54 | -0.053 | -0.149 |
atp8 | 39.10 | 37.82 | 8.33 | 14.74 | 76.92 | 23.08 | 0.017 | -0.278 |
atp6 | 31.99 | 42.26 | 11.16 | 14.58 | 74.26 | 25.74 | -0.138 | -0.133 |
cox3 | 31.22 | 40.23 | 13.07 | 15.48 | 71.45 | 28.55 | -0.127 | -0.084 |
nad3 | 32.20 | 44.07 | 9.89 | 13.84 | 76.27 | 23.73 | -0.158 | -0.166 |
nad5 | 31.59 | 45.98 | 13.29 | 9.15 | 77.56 | 22.44 | -0.186 | 0.184 |
nad4 | 30.96 | 46.67 | 14.06 | 8.30 | 77.64 | 22.36 | -0.202 | 0.258 |
nad4l | 30.33 | 50.75 | 13.21 | 5.71 | 81.08 | 18.92 | -0.252 | 0.396 |
nad6 | 37.50 | 43.45 | 6.55 | 12.50 | 80.95 | 19.05 | -0.074 | -0.312 |
cytb | 32.46 | 39.63 | 11.90 | 16.01 | 72.09 | 27.91 | -0.099 | -0.147 |
nad1 | 28.38 | 48.00 | 15.30 | 8.33 | 76.37 | 23.63 | -0.257 | 0.295 |
氨基酸Amino acid | 密码子Codon | 使用次数Usage frequency | RSCU | 氨基酸Amino acid | 密码子Codon | 使用次数Usage frequency | RSCU | |
---|---|---|---|---|---|---|---|---|
Phe(F) | UUU | 322 | 1.62 | Pro(P) | CCU | 39 | 1.73 | |
UUC | 75 | 0.38 | CCC | 27 | 1.20 | |||
Leu(L) | UUA | 258 | 2.92 | CCA | 22 | 0.98 | ||
UUG | 53 | 0.60 | CCG | 2 | 0.09 | |||
CUU | 108 | 1.22 | Thr(T) | ACU | 74 | 1.72 | ||
CUC | 20 | 0.23 | ACC | 21 | 0.49 | |||
CUA | 72 | 0.82 | ACA | 67 | 1.56 | |||
CUG | 19 | 0.22 | ACG | 10 | 0.23 | |||
Ile(I) | AUU | 287 | 1.69 | Ala(A) | GCU | 52 | 2.29 | |
AUC | 52 | 0.31 | GCC | 12 | 0.53 | |||
Met(M) | AUA | 164 | 1.55 | GCA | 25 | 1.10 | ||
AUG | 47 | 0.45 | GCG | 2 | 0.09 | |||
Val(V) | GUU | 72 | 1.81 | Tyr(Y) | UAU | 212 | 1.51 | |
GUC | 13 | 0.33 | UAC | 68 | 0.49 | |||
GUA | 56 | 1.41 | His(H) | CAU | 69 | 1.73 | ||
GUG | 18 | 0.45 | CAC | 11 | 0.28 | |||
Ser(S) | UCU | 69 | 1.71 | Gln(Q) | CAA | 56 | 1.58 | |
UCC | 25 | 0.62 | CAG | 15 | 0.42 | |||
UCA | 56 | 1.39 | Asn(N) | AAU | 147 | 1.47 | ||
UCG | 9 | 0.22 | AAC | 53 | 0.53 | |||
AGU | 50 | 1.24 | Lys(K) | AAA | 84 | 1.47 | ||
AGC | 21 | 0.52 | AAG | 30 | 0.53 | |||
AGA | 58 | 1.44 | Asp(D) | GAU | 53 | 1.58 | ||
AGG | 34 | 0.84 | GAC | 14 | 0.42 | |||
Glu(E) | GAA | 57 | 1.50 | Cys(C) | UGU | 34 | 1.31 | |
GAG | 19 | 0.50 | UGC | 18 | 0.69 | |||
Trp(W) | UGA | 75 | 1.53 | Gly(G) | GGU | 29 | 0.91 | |
UGG | 23 | 0.47 | GGC | 9 | 0.28 | |||
Arg(R) | CGU | 10 | 1.25 | GGA | 70 | 2.19 | ||
CGC | 1 | 0.13 | GGG | 20 | 0.63 | |||
CGA | 19 | 2.38 | * | UAA* | 152 | 1.33 | ||
CGG | 2 | 0.25 | UAG* | 76 | 0.67 |
Table 3 Relative synonymous codon usage(RSCU)in the mitochondrial genome of A. corpulenta
氨基酸Amino acid | 密码子Codon | 使用次数Usage frequency | RSCU | 氨基酸Amino acid | 密码子Codon | 使用次数Usage frequency | RSCU | |
---|---|---|---|---|---|---|---|---|
Phe(F) | UUU | 322 | 1.62 | Pro(P) | CCU | 39 | 1.73 | |
UUC | 75 | 0.38 | CCC | 27 | 1.20 | |||
Leu(L) | UUA | 258 | 2.92 | CCA | 22 | 0.98 | ||
UUG | 53 | 0.60 | CCG | 2 | 0.09 | |||
CUU | 108 | 1.22 | Thr(T) | ACU | 74 | 1.72 | ||
CUC | 20 | 0.23 | ACC | 21 | 0.49 | |||
CUA | 72 | 0.82 | ACA | 67 | 1.56 | |||
CUG | 19 | 0.22 | ACG | 10 | 0.23 | |||
Ile(I) | AUU | 287 | 1.69 | Ala(A) | GCU | 52 | 2.29 | |
AUC | 52 | 0.31 | GCC | 12 | 0.53 | |||
Met(M) | AUA | 164 | 1.55 | GCA | 25 | 1.10 | ||
AUG | 47 | 0.45 | GCG | 2 | 0.09 | |||
Val(V) | GUU | 72 | 1.81 | Tyr(Y) | UAU | 212 | 1.51 | |
GUC | 13 | 0.33 | UAC | 68 | 0.49 | |||
GUA | 56 | 1.41 | His(H) | CAU | 69 | 1.73 | ||
GUG | 18 | 0.45 | CAC | 11 | 0.28 | |||
Ser(S) | UCU | 69 | 1.71 | Gln(Q) | CAA | 56 | 1.58 | |
UCC | 25 | 0.62 | CAG | 15 | 0.42 | |||
UCA | 56 | 1.39 | Asn(N) | AAU | 147 | 1.47 | ||
UCG | 9 | 0.22 | AAC | 53 | 0.53 | |||
AGU | 50 | 1.24 | Lys(K) | AAA | 84 | 1.47 | ||
AGC | 21 | 0.52 | AAG | 30 | 0.53 | |||
AGA | 58 | 1.44 | Asp(D) | GAU | 53 | 1.58 | ||
AGG | 34 | 0.84 | GAC | 14 | 0.42 | |||
Glu(E) | GAA | 57 | 1.50 | Cys(C) | UGU | 34 | 1.31 | |
GAG | 19 | 0.50 | UGC | 18 | 0.69 | |||
Trp(W) | UGA | 75 | 1.53 | Gly(G) | GGU | 29 | 0.91 | |
UGG | 23 | 0.47 | GGC | 9 | 0.28 | |||
Arg(R) | CGU | 10 | 1.25 | GGA | 70 | 2.19 | ||
CGC | 1 | 0.13 | GGG | 20 | 0.63 | |||
CGA | 19 | 2.38 | * | UAA* | 152 | 1.33 | ||
CGG | 2 | 0.25 | UAG* | 76 | 0.67 |
Fig. 3 Phylogenetic tree of A. corpulenta and other insects species of Scarabaeidae based on the mitochondrial protein-coding gene sequences(maximum likelihood and Bayesian) The values on top and bottom of the branches refer to the confidence values and genetic distance, respectively. The values before and after the slash refer to the results of the maximum likelihood estimation and Bayesian algorithm, respectively
P. brevitarsis | Adoretus sp. | A. corpulenta | C. jansoni | E. chinensis | H. oblita | H. parallela | Leucocelis sp. | M. splendens | O. rhinoceros | O. opicum | P. laticollis | P. japonica | P. mutans | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protaetia brevitarsis | ||||||||||||||
Adoretus sp. | 0.2334 | |||||||||||||
Anomala corpulenta | 0.2371 | 0.2099 | ||||||||||||
Cheirotonus jansoni | 0.3535 | 0.3507 | 0.3494 | |||||||||||
Eophileurus chinensis | 0.3131 | 0.2969 | 0.3025 | 0.3696 | ||||||||||
Holotrichia oblita | 0.2868 | 0.2723 | 0.2785 | 0.3598 | 0.3447 | |||||||||
Holotrichia parallela | 0.2570 | 0.2515 | 0.2570 | 0.3486 | 0.3300 | 0.2964 | ||||||||
Leucocelis sp. | 0.1669 | 0.2319 | 0.2314 | 0.3403 | 0.3051 | 0.2899 | 0.2614 | |||||||
Mimela splendens | 0.2380 | 0.2090 | 0.0079 | 0.3502 | 0.3022 | 0.2795 | 0.2557 | 0.2307 | ||||||
Oryctes rhinoceros | 0.3025 | 0.2726 | 0.2842 | 0.3559 | 0.2574 | 0.3219 | 0.3051 | 0.2927 | 0.2839 | |||||
Osmoderma opicum | 0.2056 | 0.2803 | 0.2758 | 0.3344 | 0.3460 | 0.3193 | 0.2929 | 0.2386 | 0.2762 | 0.3362 | ||||
Polyphylla laticollis | 0.3173 | 0.3015 | 0.3172 | 0.3798 | 0.3607 | 0.3543 | 0.2968 | 0.3233 | 0.3169 | 0.3513 | 0.3266 | |||
Popillia japonica | 0.2522 | 0.2218 | 0.1774 | 0.3615 | 0.3100 | 0.2948 | 0.2720 | 0.2485 | 0.1779 | 0.2919 | 0.2870 | 0.3122 | ||
Popillia mutans | 0.2472 | 0.2190 | 0.1727 | 0.3562 | 0.3132 | 0.2901 | 0.2651 | 0.2477 | 0.1735 | 0.2875 | 0.2902 | 0.3159 | 0.1578 | |
Rhopaea magnicornis | 0.2553 | 0.2382 | 0.2445 | 0.3542 | 0.3219 | 0.2937 | 0.2362 | 0.2521 | 0.2461 | 0.3011 | 0.2563 | 0.2897 | 0.2588 | 0.2521 |
Table 4 Pairwise genetic distances of mitochondrial protein-coding gene sequences between A. corpulenta and other phytophagous species of Scarabaeidae based on Kimura-2-Parameters
P. brevitarsis | Adoretus sp. | A. corpulenta | C. jansoni | E. chinensis | H. oblita | H. parallela | Leucocelis sp. | M. splendens | O. rhinoceros | O. opicum | P. laticollis | P. japonica | P. mutans | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protaetia brevitarsis | ||||||||||||||
Adoretus sp. | 0.2334 | |||||||||||||
Anomala corpulenta | 0.2371 | 0.2099 | ||||||||||||
Cheirotonus jansoni | 0.3535 | 0.3507 | 0.3494 | |||||||||||
Eophileurus chinensis | 0.3131 | 0.2969 | 0.3025 | 0.3696 | ||||||||||
Holotrichia oblita | 0.2868 | 0.2723 | 0.2785 | 0.3598 | 0.3447 | |||||||||
Holotrichia parallela | 0.2570 | 0.2515 | 0.2570 | 0.3486 | 0.3300 | 0.2964 | ||||||||
Leucocelis sp. | 0.1669 | 0.2319 | 0.2314 | 0.3403 | 0.3051 | 0.2899 | 0.2614 | |||||||
Mimela splendens | 0.2380 | 0.2090 | 0.0079 | 0.3502 | 0.3022 | 0.2795 | 0.2557 | 0.2307 | ||||||
Oryctes rhinoceros | 0.3025 | 0.2726 | 0.2842 | 0.3559 | 0.2574 | 0.3219 | 0.3051 | 0.2927 | 0.2839 | |||||
Osmoderma opicum | 0.2056 | 0.2803 | 0.2758 | 0.3344 | 0.3460 | 0.3193 | 0.2929 | 0.2386 | 0.2762 | 0.3362 | ||||
Polyphylla laticollis | 0.3173 | 0.3015 | 0.3172 | 0.3798 | 0.3607 | 0.3543 | 0.2968 | 0.3233 | 0.3169 | 0.3513 | 0.3266 | |||
Popillia japonica | 0.2522 | 0.2218 | 0.1774 | 0.3615 | 0.3100 | 0.2948 | 0.2720 | 0.2485 | 0.1779 | 0.2919 | 0.2870 | 0.3122 | ||
Popillia mutans | 0.2472 | 0.2190 | 0.1727 | 0.3562 | 0.3132 | 0.2901 | 0.2651 | 0.2477 | 0.1735 | 0.2875 | 0.2902 | 0.3159 | 0.1578 | |
Rhopaea magnicornis | 0.2553 | 0.2382 | 0.2445 | 0.3542 | 0.3219 | 0.2937 | 0.2362 | 0.2521 | 0.2461 | 0.3011 | 0.2563 | 0.2897 | 0.2588 | 0.2521 |
[1] | 鞠倩, 郭晓强, 李晓, 等. 铜绿丽金龟对寄主植物挥发物的触角电生理及行为反应[J]. 植物保护学报, 2016, 43(2): 281-287. |
Ju Q, Guo XQ, Li X, et al. EAG and behavioral responses of copper-green chafer Anomala corpulenta Motschulsky(Coleoptera: Rutelidae)[J]. J Plant Prot, 2016, 43(2): 281-287. | |
[2] | Li X, Ju Q, Jie WC, et al. Chemosensory gene families in adult antennae of Anomala corpulenta Motschulsky(Coleoptera: Scarabaeidae: Rutelinae)[J]. PLoS One, 2015, 10(4): e0121504. |
[3] |
Bouchard P, Bousquet Y, Davies AE, et al. Family-group names in Coleoptera(Insecta)[J]. ZooKeys, 2011(88): 1-972.
doi: 10.3897/zookeys.88.807 pmid: 21594053 |
[4] | 路园园, 丁强, 杨星科, 等. 中国丽金龟亚科昆虫分类学研究进展[J]. 环境昆虫学报, 2022. http://kns.cnki.net/kcms/detail/44.1640.Q.20220509.1919.002.html. |
Lu YY, Ding Q, Yang XK, et al. Advances in taxonomy of Chinese Rutelinae[J]. J Environ Entomol, 2022. http://kns.cnki.net/kcms/detail/44.1640.Q.20220509.1919.002.html. | |
[5] |
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny[J]. Annu Rev Entomol, 2014, 59: 95-117.
doi: 10.1146/annurev-ento-011613-162007 pmid: 24160435 |
[6] |
Wei SJ, Shi M, Chen XX, et al. New views on strand asymmetry in insect mitochondrial genomes[J]. PLoS One, 2010, 5(9): e12708.
doi: 10.1371/journal.pone.0012708 URL |
[7] | 方晨晨, 郭晓华, 刘广纯, 等. 基因序列在金龟总科(Scarabaeoidea)分子系统学研究中的应用[J]. 应用昆虫学报, 2012, 49(4): 1048-1055. |
Fang CC, Guo XH, Liu GC, et al. Application of gene sequences to the molecular systematics of the Scarabaeoidea[J]. Chin J Appl Entomol, 2012, 49(4): 1048-1055. | |
[8] | 申欣, 李晓, 徐启华. 日本鼓虾与鲜明鼓虾线粒体基因组全序列的分析比较[J]. 海洋学报, 2012, 34(5): 147-153. |
Shen X, Li X, Xu QH. Comparison and analysis of Alpheus japonicus and A. distinguendus complete mitochondrial genome sequences[J]. Acta Oceanol Sin, 2012, 34(5): 147-153.
doi: 10.1007/s13131-015-0766-9 URL |
|
[9] |
薛清, 杜虹锐, 薛会英, 等. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98-106.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0628 |
Xue Q, Du HR, Xue HY, et al. Mitochondrial genome and phylogeny of Aphelenchoides medicagus[J]. Biotechnol Bull, 2021, 37(7): 98-106. | |
[10] |
Ye F, Samuels DC, Clark T, et al. High-throughput sequencing in mitochondrial DNA research[J]. Mitochondrion, 2014, 17: 157-163.
doi: 10.1016/j.mito.2014.05.004 pmid: 24859348 |
[11] |
Yang WZ, Zhang Y, Feng SQ, et al. The first complete mitochondrial genome of the Japanese beetle Popillia japonica(Coleoptera: Scarabaeidae)and its phylogenetic implications for the superfamily Scarabaeoidea[J]. Int J Biol Macromol, 2018, 118(Pt B): 1406-1413.
doi: 10.1016/j.ijbiomac.2018.06.131 URL |
[12] | Song N, Zhang H. The mitochondrial genomes of phytophagous scarab beetles and systematic implications[J]. J Insect Sci, 2018, 18(6): 11. |
[13] | 万书波. 中国花生栽培学[M]. 上海: 上海科学技术出版社, 2003. |
Wan SB. Peanut cultivation in China[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2003. | |
[14] | 张鸿飞. 蓖麻对华北地区关键金龟甲种类趋性、交配和解毒代谢的影响[D]. 郑州: 河南农业大学, 2018. |
Zhang HF. Effects of Castor bean on taxis, mating, and detoxification of key scarab species in North China[D]. Zhengzhou: Henan Agricultural University, 2018. | |
[15] |
Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2): e30619.
doi: 10.1371/journal.pone.0030619 URL |
[16] |
Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5): 455-477.
doi: 10.1089/cmb.2012.0021 pmid: 22506599 |
[17] |
Boetzer M, Henkel CV, Jansen HJ, et al. Scaffolding pre-assembled contigs using SSPACE[J]. Bioinformatics, 2011, 27(4): 578-579.
doi: 10.1093/bioinformatics/btq683 pmid: 21149342 |
[18] |
Bernt M, Donath A, Jühling F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Mol Phylogenet Evol, 2013, 69(2): 313-319.
doi: 10.1016/j.ympev.2012.08.023 URL |
[19] |
Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Res, 2016, 44(W1): W54-W57.
doi: 10.1093/nar/gkw413 URL |
[20] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[21] |
Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036 |
[22] |
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[J]. Mol Biol Evol, 2000, 17(4): 540-552.
doi: 10.1093/oxfordjournals.molbev.a026334 pmid: 10742046 |
[23] |
Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and Codon information[J]. Cladistics, 2011, 27(2): 171-180.
doi: 10.1111/j.1096-0031.2010.00329.x URL |
[24] |
Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML[J]. Mol Biol Evol, 2017, 34(9): 2422-2424.
doi: 10.1093/molbev/msx149 pmid: 28472384 |
[25] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nat Methods, 2017, 14(6): 587-589.
doi: 10.1038/nmeth.4285 pmid: 28481363 |
[26] |
Guindon S, Dufayard JF, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0[J]. Syst Biol, 2010, 59(3): 307-321.
doi: 10.1093/sysbio/syq010 pmid: 20525638 |
[27] |
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models[J]. Bioinformatics, 2003, 19(12): 1572-1574.
doi: 10.1093/bioinformatics/btg180 pmid: 12912839 |
[28] |
Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria[J]. Nature, 1981, 290(5806): 470-474.
doi: 10.1038/290470a0 URL |
[29] | Liao F, Wang L, Wu S, et al. The complete mitochondrial genome of the fall webworm, Hyphantria cunea(Lepidoptera: Arctiidae)[J]. Int J Biol Sci, 2010, 6(2): 172-186. |
[30] |
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution[J]. Int Rev Cytol, 1992, 141: 173-216.
pmid: 1452431 |
[31] |
Clary DO, Wolstenholme DR. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code[J]. J Mol Evol, 1985, 22(3): 252-271.
pmid: 3001325 |
[32] |
Bohacz C, James GH, Ahrens D. Comparative morphology of antennal surface structures in pleurostict scarab beetles(Coleoptera)[J]. Zoomorphology, 2020, 139(3): 327-346.
doi: 10.1007/s00435-020-00495-0 URL |
[33] |
Ayivi SPG, Tong Y, Storey KB, et al. The mitochondrial genomes of 18 new pleurosticti(Coleoptera: Scarabaeidae)exhibit a novel trnQ-NCR-trnI-trnM gene rearrangement and clarify phylogenetic relationships of subfamilies within Scarabaeidae[J]. Insects, 2021, 12(11): 1025.
doi: 10.3390/insects12111025 URL |
[34] |
Ahrens D. The phylogeny of Sericini and their position within the Scarabaeidae based on morphological characters(Coleoptera: Scarabaeidae)[J]. Syst Entomol, 2006, 31(1): 113-144.
doi: 10.1111/j.1365-3113.2005.00307.x URL |
[35] |
Coca-Abia MM. Phylogenetic relationships of the subfamily melolonthinae(Coleoptera, Scarabaeidae)[J]. Insect Syst Evol, 2007, 38(4): 447-472.
doi: 10.1163/187631207794760921 URL |
[1] | LIU Xiong-wei, LIU Chang, ZENG Xian-fa, YANG Xiao-ying, FENG Ting-ting, ZHAO Jie-hong, ZHOU Ying. Comparative and Phylogenetic Analyses of Complete Chloroplast Genomes in Ardisia crenata [J]. Biotechnology Bulletin, 2023, 39(1): 232-242. |
[2] | LIU Jing-ju, ZHANG Yu-sen, CHEN Juan, SUN Bing-da, ZHAO Guo-zhu. Research Progress in Modern Taxonomy and Nomenclature of Aspergillus [J]. Biotechnology Bulletin, 2022, 38(7): 109-118. |
[3] | ZHU Xin-ni, WANG Shan-shan, ZHOU Jia-qin, ZHU Shi-hua. Research Advances of NDPKs in Plants [J]. Biotechnology Bulletin, 2017, 33(11): 19-28. |
[4] | ZHANG Zhe,HUANG Chien-hsun,QI Ji. Revealing Deep Phylogeny of Brassicaceae Using Composition Analysis of Low-copy Nuclear Genes [J]. Biotechnology Bulletin, 2016, 32(12): 86-95. |
[5] | Liu Guohong, Liu Bo, Lin Yingzhi, Tang Jianyang. The Comparsion of Bacillus Species Classification Based on Fatty Acid and 16S rRNA Gene [J]. Biotechnology Bulletin, 2015, 31(3): 146-153. |
[6] | Ding Mei, Chen Xiang, Xu Houqiang, Wu Tonggui, Feng Wenwu, Bai Lin,. Phylogenetic Analysis of Three Domestic Pig Breeds in Guizhou Province [J]. Biotechnology Bulletin, 2014, 0(4): 96-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||