Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 13-25.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0865
Previous Articles Next Articles
GE Yan-rui(), ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li()
Received:
2022-07-14
Online:
2023-03-26
Published:
2023-04-10
GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium[J]. Biotechnology Bulletin, 2023, 39(3): 13-25.
名称 Name | 表达部位 Location | 受体 Receptor | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
CLE41/44/TDIF | 韧皮部 Phloem | PXY/TDR | 促进维管形成层细胞分裂,抑制形成层分化 Promote vascular cambium cell division and inhibit cambium differentiation | [ |
XVP | [ | |||
CLE9/10 | 木质部前体细胞 Xylem precursor cells | HSL1 | 抑制气孔细胞的分裂 Inhibit stomatal cell division | [ |
BAM | 抑制形成层细胞平周分裂 Inhibit periferential division of cambial cells | [ | ||
CLE45 | 原生韧皮部 Primary phloem | BAM3 | 负调控拟南芥原韧皮部分化 Negatively regulate of Arabidopsis prophloem differentiation | [ |
CLE25 | 韧皮部 Phloem | CLERK- CLV2 | 促进韧皮部的启动 Promote phloem initiation | [ |
Table 1 Peptides involved in vascular cambium regulation
名称 Name | 表达部位 Location | 受体 Receptor | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
CLE41/44/TDIF | 韧皮部 Phloem | PXY/TDR | 促进维管形成层细胞分裂,抑制形成层分化 Promote vascular cambium cell division and inhibit cambium differentiation | [ |
XVP | [ | |||
CLE9/10 | 木质部前体细胞 Xylem precursor cells | HSL1 | 抑制气孔细胞的分裂 Inhibit stomatal cell division | [ |
BAM | 抑制形成层细胞平周分裂 Inhibit periferential division of cambial cells | [ | ||
CLE45 | 原生韧皮部 Primary phloem | BAM3 | 负调控拟南芥原韧皮部分化 Negatively regulate of Arabidopsis prophloem differentiation | [ |
CLE25 | 韧皮部 Phloem | CLERK- CLV2 | 促进韧皮部的启动 Promote phloem initiation | [ |
名称 Name | 表达部位 Location | 靶基因 Target gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MP/ARF5 | 原形成层 Procambia | WOX4 | 促进木质部分化 Promote xylem differentiation | [ |
TMO5 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ | ||
TMO5-LHW | 初生木质部 Primary xylem | LOG3/4 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ |
DOF2.1 | 促进原形成层细胞分裂 Promote the division of the protocambial cells | [ | ||
WOX4/14 | 原形成层、维管形成层 Procambia and vascular cambium | TMO6 | 促进形成层增殖,参与维管束形状的确定 Promote cambium proliferation, and participate in the determination of vascular bundle shape | [ |
LBD4 | ||||
TMO6 | 维管形成层 Vascular cambium | LBD4 | ||
SOC1 | 顶端分生组织、原形成层 Apical meristem and procambia | AHL15 | 促进开花,影响分生组织的确定性,抑制次生生长 Promote flowering, affect the certainty of meristem, and inhibit secondary growth | [ |
FUL | ||||
AHL15 | 维管形成层 Vascular cambium | IPT3/7、LOG5 | 抑制腋芽分生组织成熟,延长寿命,促进形成层活性,促进次生木质部的发育 Inhibit the maturation of axillary bud meristem, prolong the life span, promote the activity of cambium, and promote the development of secondary xylem | [ |
XVP | 维管形成层 Vascular cambium | CLE44 | 促进木质部分化,维持维管稳定 Promote xylem differentiation, and maintain vascular stability | [ |
EPFL4/6 | 内皮层 Endodermis | ER/ERL1 | 促进原形成层发育 Promote the development of procambium | [ |
GRF | 维管形成层、短暂扩充细胞 Vascular cambium、transient amplifying cell | PLT | 促进生长 Promote growing | [ |
Table 2 Transcription factors involved in vascular cambium regulation
名称 Name | 表达部位 Location | 靶基因 Target gene | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
MP/ARF5 | 原形成层 Procambia | WOX4 | 促进木质部分化 Promote xylem differentiation | [ |
TMO5 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ | ||
TMO5-LHW | 初生木质部 Primary xylem | LOG3/4 | 控制维管组织的确定,促进原形成层周壁细胞分裂 Control the determination of vascular tissue, and promote the division of periparietal cells in the procambium | [ |
DOF2.1 | 促进原形成层细胞分裂 Promote the division of the protocambial cells | [ | ||
WOX4/14 | 原形成层、维管形成层 Procambia and vascular cambium | TMO6 | 促进形成层增殖,参与维管束形状的确定 Promote cambium proliferation, and participate in the determination of vascular bundle shape | [ |
LBD4 | ||||
TMO6 | 维管形成层 Vascular cambium | LBD4 | ||
SOC1 | 顶端分生组织、原形成层 Apical meristem and procambia | AHL15 | 促进开花,影响分生组织的确定性,抑制次生生长 Promote flowering, affect the certainty of meristem, and inhibit secondary growth | [ |
FUL | ||||
AHL15 | 维管形成层 Vascular cambium | IPT3/7、LOG5 | 抑制腋芽分生组织成熟,延长寿命,促进形成层活性,促进次生木质部的发育 Inhibit the maturation of axillary bud meristem, prolong the life span, promote the activity of cambium, and promote the development of secondary xylem | [ |
XVP | 维管形成层 Vascular cambium | CLE44 | 促进木质部分化,维持维管稳定 Promote xylem differentiation, and maintain vascular stability | [ |
EPFL4/6 | 内皮层 Endodermis | ER/ERL1 | 促进原形成层发育 Promote the development of procambium | [ |
GRF | 维管形成层、短暂扩充细胞 Vascular cambium、transient amplifying cell | PLT | 促进生长 Promote growing | [ |
[1] | 王洁华, 卢孟柱. 木本植物次生维管系统形态建成的基因调控与信号转导研究进展[J]. 林业科学, 2009, 45(11): 127-134. |
Wang JH, Lu MZ. Progress in study on the gene regulation and the signal transduction in the morphogenesis of secondary vascular system in woody plants[J]. Sci Silvae Sin, 2009, 45(11): 127-134. | |
[2] |
Etchells JP, Mishra LS, Kumar M, et al. Wood formation in trees is increased by manipulating PXY-regulated cell division[J]. Curr Biol, 2015, 25(8): 1050-1055.
doi: 10.1016/j.cub.2015.02.023 pmid: 25866390 |
[3] |
Fischer U, Kucukoglu M, Helariutta Y, et al. The dynamics of cambial stem cell activity[J]. Annu Rev Plant Biol, 2019, 70: 293-319.
doi: 10.1146/annurev-arplant-050718-100402 pmid: 30822110 |
[4] |
黄世全, 王棚涛, 郭思义, 等. 植物木质部进化与发育的研究概述[J]. 中国农学通报, 2019, 35(21): 82-89.
doi: 10.11924/j.issn.1000-6850.casb18020088 |
Huang SQ, Wang PT, Guo SY, et al. Evolution and development of plant xylem: a research summary[J]. Chin Agric Sci Bull, 2019, 35(21): 82-89.
doi: 10.11924/j.issn.1000-6850.casb18020088 |
|
[5] |
Scheres B, Wolkenfelt H, Willemsen V, et al. Embryonic origin of the Arabidopsis primary root and root meristem initials[J]. Development, 1994, 120(9): 2475-2487.
doi: 10.1242/dev.120.9.2475 URL |
[6] |
Chen HM, Pang Y, Zeng J, et al. The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides[J]. J Integr Plant Biol, 2012, 54(7): 456-470.
doi: 10.1111/jipb.2012.54.issue-7 URL |
[7] | 刘君娣. 毛白杨维管组织发育和活动的机理研究[D]. 兰州: 甘肃农业大学, 2017. |
Liu JD. The initiation and activity of vascular tissues in Populus tomentosa Carr[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[8] | 苏会丽. 赤霉素与生长素协同调控毛白杨维管形成层分裂活性的分子机理[D]. 重庆: 西南大学, 2020. |
Su HL. Molecular mechanism of gibberellin and auxin synergistic regulating vascular cambial activity in Populus tomentosa[D]. Chongqing: Southwest University, 2020. | |
[9] |
Smetana O, Mäkilä R, Lyu MN, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium[J]. Nature, 2019, 565(7740): 485-489.
doi: 10.1038/s41586-018-0837-0 |
[10] |
Sundberg B, Uggla C. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris[J]. Physiol Plant, 1998, 104(1): 22-29.
doi: 10.1034/j.1399-3054.1998.1040104.x URL |
[11] |
Agusti J, Herold S, Schwarz M, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20242-20247.
doi: 10.1073/pnas.1111902108 pmid: 22123958 |
[12] |
Bhalerao RP, Fischer U. Auxin gradients across wood-instructive or incidental?[J]. Physiol Plant, 2014, 151(1): 43-51.
doi: 10.1111/ppl.12134 pmid: 24286229 |
[13] |
Baba K, Karlberg A, Schmidt J, et al. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen[J]. PNAS, 2011, 108(8): 3418-3423.
doi: 10.1073/pnas.1011506108 pmid: 21289280 |
[14] |
Hardtke CS. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. EMBO J, 1998, 17(5): 1405-1411.
doi: 10.1093/emboj/17.5.1405 pmid: 9482737 |
[15] |
Brackmann K, Qi JY, Gebert M, et al. Spatial specificity of auxin responses coordinates wood formation[J]. Nat Commun, 2018, 9(1): 875.
doi: 10.1038/s41467-018-03256-2 pmid: 29491423 |
[16] |
Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, et al. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root[J]. BMC Plant Biol, 2016, 16(Suppl 1): 5.
doi: 10.1186/s12870-015-0685-0 URL |
[17] |
Sauer M, Balla J, Luschnig C, et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity[J]. Genes Dev, 2006, 20(20): 2902-2911.
doi: 10.1101/gad.390806 URL |
[18] |
Ragni L, Nieminen K, Pacheco-Villalobos D, et al. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion[J]. Plant Cell, 2011, 23(4): 1322-1336.
doi: 10.1105/tpc.111.084020 URL |
[19] |
Björklund S, Antti H, Uddestrand I, et al. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin[J]. Plant J, 2007, 52(3): 499-511.
doi: 10.1111/j.1365-313X.2007.03250.x pmid: 17825053 |
[20] |
Johnsson C, Jin X, Xue WY, et al. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors[J]. Physiol Plant, 2019, 165(4): 673-689.
doi: 10.1111/ppl.12766 pmid: 29808599 |
[21] |
Israelsson M, Sundberg B, Moritz T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen[J]. Plant J, 2005, 44(3): 494-504.
pmid: 16236158 |
[22] |
Tal I, Zhang Y, Jørgensen ME, et al. The Arabidopsis NPF3 protein is a GA transporter[J]. Nat Commun, 2016, 7: 11486.
doi: 10.1038/ncomms11486 |
[23] |
Jasinski S, Piazza P, Craft J, et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Curr Biol, 2005, 15(17): 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211 |
[24] |
Ikematsu S, Tasaka M, Torii KU, et al. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl[J]. New Phytol, 2017, 213(4): 1697-1709.
doi: 10.1111/nph.14335 pmid: 27891614 |
[25] |
Matsumoto-Kitano M, Kusumoto T, Tarkowski P, et al. Cytokinins are central regulators of cambial activity[J]. Proc Natl Acad Sci USA, 2008, 105(50): 20027-20031.
doi: 10.1073/pnas.0805619105 pmid: 19074290 |
[26] |
de Rybel B, Möller B, Yoshida S, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis[J]. Dev Cell, 2013, 24(4): 426-437.
doi: 10.1016/j.devcel.2012.12.013 pmid: 23415953 |
[27] |
Ohashi-Ito K, Saegusa M, Iwamoto K, et al. A bHLH complex activates vascular cell division via cytokinin action in root apical meristem[J]. Curr Biol, 2014, 24(17): 2053-2058.
doi: 10.1016/j.cub.2014.07.050 pmid: 25131670 |
[28] |
De Rybel B, Adibi M, Breda AS, et al. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis[J]. Science, 2014, 345(6197): 1255215.
doi: 10.1126/science.1255215 URL |
[29] |
Tokunaga H, Kojima M, Kuroha T, et al. Arabidopsis lonely guy(LOG)multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation[J]. Plant J, 2012, 69(2): 355-365.
doi: 10.1111/tpj.2011.69.issue-2 URL |
[30] |
Smet W, Sevilem I, de Luis Balaguer MA, et al. DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW[J]. Curr Biol, 2019, 29(3): 520-529.e6.
doi: S0960-9822(18)31675-0 pmid: 30686737 |
[31] |
Randall RS, Miyashima S, Blomster T, et al. AINTEGUMENTA and the D-type cyclin CYCD3;1 regulate root secondary growth and respond to cytokinins[J]. Biol Open, 2015, 4(10): 1229-1236.
doi: 10.1242/bio.013128 pmid: 26340943 |
[32] |
Bürger M, Chory J. The many models of strigolactone signaling[J]. Trends Plant Sci, 2020, 25(4): 395-405.
doi: S1360-1385(19)30334-6 pmid: 31948791 |
[33] |
Hayward A, Stirnberg P, Beveridge C, et al. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiol, 2009, 151(1): 400-412.
doi: 10.1104/pp.109.137646 pmid: 19641034 |
[34] |
Wang HZ. Regulation of vascular cambium activity[J]. Plant Sci, 2020, 291: 110322.
doi: 10.1016/j.plantsci.2019.110322 URL |
[35] |
Love J, Björklund S, Vahala J, et al. Ethylene is an endogenous Stimulator of cell division in the cambial meristem of Popu-lus[J]. PNAS, 2009, 106(14): 5984-5989.
doi: 10.1073/pnas.0811660106 URL |
[36] |
Etchells JP, Provost CM, Turner SR. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling[J]. PLoS Genet, 2012, 8(11): e1002997.
doi: 10.1371/journal.pgen.1002997 URL |
[37] |
Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division[J]. Development, 2010, 137(5): 767-774.
doi: 10.1242/dev.044941 pmid: 20147378 |
[38] |
Sehr EM, Agusti J, Lehner R, et al. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation[J]. Plant J, 2010, 63(5): 811-822.
doi: 10.1111/tpj.2010.63.issue-5 URL |
[39] |
Wang CP, Liu NX, Geng Z, et al. Integrated transcriptome and proteome analysis reveals brassinosteroid-mediated regulation of cambium initiation and patterning in woody stem[J]. Hortic Res, 2022, 9: uhab048.
doi: 10.1093/hr/uhab048 URL |
[40] |
Jun J, Fiume E, Roeder AHK, et al. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis[J]. Plant Physiol, 2010, 154(4): 1721-1736.
doi: 10.1104/pp.110.163683 URL |
[41] |
Yamaguchi YL, Ishida T, Yoshimura M, et al. A collection of mutants for CLE-peptide-encoding genes in Arabidopsis generated by CRISPR/Cas9-mediated gene targeting[J]. Plant Cell Physiol, 2017, 58(11): 1848-1856.
doi: 10.1093/pcp/pcx139 pmid: 29036337 |
[42] |
Hirakawa Y, Shinohara H, Kondo Y, et al. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system[J]. PNAS, 2008, 105(39): 15208-15213.
doi: 10.1073/pnas.0808444105 pmid: 18812507 |
[43] |
Etchells JP, Smit ME, Gaudinier A, et al. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development[J]. New Phytol, 2016, 209(2): 474-484.
doi: 10.1111/nph.13642 pmid: 26414535 |
[44] |
Zhang HQ, Lin XY, Han ZF, et al. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs[J]. Cell Res, 2016, 26(5): 543-555.
doi: 10.1038/cr.2016.45 pmid: 27055373 |
[45] |
Li ZJ, Chakraborty S, Xu GZ. Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions[J]. PLoS One, 2017, 12(4): e0175317.
doi: 10.1371/journal.pone.0175317 URL |
[46] |
Morita J, Kato K, Nakane T, et al. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide[J]. Nat Commun, 2016, 7: 12383.
doi: 10.1038/ncomms12383 pmid: 27498761 |
[47] |
Fukuda H, Hardtke CS. Peptide signaling pathways in vascular differentiation[J]. Plant Physiol, 2020, 182(4): 1636-1644.
doi: 10.1104/pp.19.01259 pmid: 31796560 |
[48] |
Qian PP, Song W, Yokoo T, et al. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors[J]. Nat Plants, 2018, 4(12): 1071-1081.
doi: 10.1038/s41477-018-0317-4 pmid: 30518839 |
[49] |
Shinohara H, Moriyama Y, Ohyama K, et al. Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs[J]. Plant J, 2012, 70(5): 845-854.
doi: 10.1111/j.1365-313X.2012.04934.x URL |
[50] |
Anne P, Amiguet-Vercher A, Brandt B, et al. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis[J]. Development, 2018, 145(10): dev162354.
doi: 10.1242/dev.162354 URL |
[51] |
Kang YH, Hardtke CS. Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling[J]. EMBO Rep, 2016, 17(8): 1145-1154.
doi: 10.15252/embr.201642450 URL |
[52] |
Hazak O, Brandt B, Cattaneo P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO Rep, 2017, 18(8): 1367-1381.
doi: 10.15252/embr.201643535 pmid: 28607033 |
[53] |
Breda AS, Hazak O, Schultz P, et al. A cellular insulator against CLE45 peptide signaling[J]. Curr Biol, 2019, 29(15): 2501-2508.e3.
doi: S0960-9822(19)30764-X pmid: 31327718 |
[54] | Ren SC, Song XF, Chen WQ, et al. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex[J]. J Integr Plant Biol, 2019, 61(10): 1043-1061. |
[55] |
Rodriguez-Villalon A, Gujas B, Kang YH, et al. Molecular genetic framework for protophloem formation[J]. Proc Natl Acad Sci USA, 2014, 111(31): 11551-11556.
doi: 10.1073/pnas.1407337111 pmid: 25049386 |
[56] |
Yuan BJ, Wang HZ. Peptide signaling pathways regulate plant vascular development[J]. Front Plant Sci, 2021, 12: 719606.
doi: 10.3389/fpls.2021.719606 URL |
[57] |
Etchells JP, Provost CM, Mishra L, et al. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation[J]. Development, 2013, 140(10): 2224-2234.
doi: 10.1242/dev.091314 pmid: 23578929 |
[58] |
Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development[J]. J Exp Bot, 2016, 67(16): 4813-4826.
doi: 10.1093/jxb/erw208 pmid: 27229733 |
[59] |
Smit ME, McGregor SR, Sun H, et al. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis[J]. Plant Cell, 2020, 32(2): 319-335.
doi: 10.1105/tpc.19.00562 URL |
[60] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling[J]. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 URL |
[61] |
Tang X, Wang C, Chai G, et al. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus[J]. Plant Cell, 2022, 34(9): 3364-3382.
doi: 10.1093/plcell/koac178 URL |
[62] |
Melzer S, Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana[J]. Nat Genet, 2008, 40(12): 1489-1492.
doi: 10.1038/ng.253 |
[63] |
Karami O, Rahimi A, Khan M, et al. A suppressor of axillary meristem maturation promotes longevity in flowering plants[J]. Nat Plants, 2020, 6(4): 368-376.
doi: 10.1038/s41477-020-0637-z pmid: 32284551 |
[64] |
Rahimi A, Karami O, Lestari AD, et al. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15[J]. Curr Biol, 2022, 32(8): 1764-1775.e3.
doi: 10.1016/j.cub.2022.02.060 URL |
[65] |
Kucukoglu M. A novel NAC domain transcription factor XVP controls the balance of xylem formation and cambial cell divisions[J]. New Phytol, 2020, 226(1): 5-7.
doi: 10.1111/nph.16400 pmid: 31960459 |
[66] |
Yang JH, Lee KH, Du Q, et al. A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity[J]. New Phytol, 2020, 226(1): 59-74.
doi: 10.1111/nph.16289 pmid: 31660587 |
[67] |
Zhang HQ, Lin XY, Han ZF, et al. SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development[J]. Mol Plant, 2016, 9(10): 1406-1414.
doi: S1674-2052(16)30136-8 pmid: 27449136 |
[68] |
Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases[J]. J Exp Bot, 2013, 64(17): 5335-5343.
doi: 10.1093/jxb/ert196 pmid: 23881395 |
[69] | Wang N, Bagdassarian KS, Doherty RE, et al. Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue[J]. Development, 2019, 146(10): dev177105. |
[70] |
Uchida N, Lee JS, Horst RJ, et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem[J]. Proc Natl Acad Sci USA, 2012, 109(16): 6337-6342.
doi: 10.1073/pnas.1117537109 pmid: 22474391 |
[71] |
Rodriguez RE, Ercoli MF, Debernardi JM, et al. microRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots[J]. Plant Cell, 2015, 27(12): 3354-3366.
doi: 10.1105/tpc.15.00452 URL |
[72] |
Mallory AC, Reinhart BJ, Jones-Rhoades MW, et al. microRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region[J]. EMBO J, 2004, 23(16): 3356-3364.
doi: 10.1038/sj.emboj.7600340 pmid: 15282547 |
[73] |
Zhou YY, Honda M, Zhu HL, et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance[J]. Cell Rep, 2015, 10(11): 1819-1827.
doi: 10.1016/j.celrep.2015.02.047 URL |
[74] |
Miyashima S, Roszak P, Sevilem I, et al. Mobile PEAR transcription factors integrate positional cues to prime cambial growth[J]. Nature, 2019, 565(7740): 490-494.
doi: 10.1038/s41586-018-0839-y |
[75] |
Wang CY, Zhang SC, Yu Y, et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis[J]. Plant Biotechnol J, 2014, 12(8): 1132-1142.
doi: 10.1111/pbi.12222 URL |
[76] | Zhao YY, Lin S, Qiu ZB, et al. microRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis[J]. Plant Physiol, 2015, 169(4): 2539-2552. |
[77] |
Lu SF, Li QZ, Wei HR, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proc Natl Acad Sci USA, 2013, 110(26): 10848-10853.
doi: 10.1073/pnas.1308936110 URL |
[78] |
Hou J, Xu HM, Fan D, et al. MiR319a-targeted PtoTCP20 regulates secondary growth via interactions with PtoWOX4 and PtoWND6 in Populus tomentosa[J]. New Phytol, 2020, 228(4): 1354-1368.
doi: 10.1111/nph.v228.4 URL |
[79] |
Mähönen AP, Bishopp A, Higuchi M, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development[J]. Science, 2006, 311(5757): 94-98.
doi: 10.1126/science.1118875 pmid: 16400151 |
[80] |
Bishopp A, Help H, El-Showk S, et al. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots[J]. Curr Biol, 2011, 21(11): 917-926.
doi: 10.1016/j.cub.2011.04.017 pmid: 21620702 |
[81] |
Immanen J, Nieminen K, Smolander OP, et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity[J]. Curr Biol, 2016, 26(15): 1990-1997.
doi: S0960-9822(16)30550-4 pmid: 27426519 |
[82] | Wang SN, Wang HZ. Coordination of multilayered signalling pathways on vascular cambium activity[J]. Annual Plant Reviews, 2020, 3(3): 457-472. |
[83] |
Kondo Y, Ito T, Nakagami H, et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling[J]. Nat Commun, 2014, 5: 3504.
doi: 10.1038/ncomms4504 pmid: 24662460 |
[84] |
Kondo Y, Fujita T, Sugiyama M, et al. A novel system for xylem cell differentiation in Arabidopsis thaliana[J]. Mol Plant, 2015, 8(4): 612-621.
doi: 10.1016/j.molp.2014.10.008 pmid: 25624147 |
[85] |
Han S, Cho H, Noh J, et al. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth[J]. Nat Plants, 2018, 4(8): 605-614.
doi: 10.1038/s41477-018-0180-3 pmid: 29988154 |
[86] |
Yang S, Wang SN, Li SJ, et al. Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity[J]. J Exp Bot, 2020, 71(22): 7160-7170.
doi: 10.1093/jxb/eraa423 URL |
[87] |
Oralová V, Rosa JT, Soenens M, et al. Beyond the whole-mount phenotype: high-resolution imaging in fluorescence-based applications on zebrafish[J]. Biol Open, 2019, 8(5): bio042374.
doi: 10.1242/bio.042374 URL |
[88] |
Bencivenga S, Serrano-Mislata A, Bush M, et al. Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis[J]. Dev Cell, 2016, 39(2): 198-208.
doi: S1534-5807(16)30588-3 pmid: 27666746 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[8] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[9] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[10] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[11] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[12] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[13] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[14] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[15] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||