Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 26-34.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0775
Previous Articles Next Articles
LIU Cheng-xia(), SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin()
Received:
2022-06-25
Online:
2023-03-26
Published:
2023-04-10
LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions[J]. Biotechnology Bulletin, 2023, 39(3): 26-34.
[1] |
Lv PT, Yu S, Zhu N, et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening[J]. Nat Plants, 2018, 4(10): 784-791.
doi: 10.1038/s41477-018-0249-z pmid: 30250279 |
[2] | Ji XY, Nie XG, Liu YJ, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiol, 2016, 36(2): 193-207. |
[3] |
Verma D, Jalmi SK, Bhagat PK, et al. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis[J]. FEBS J, 2020, 287(12): 2560-2576.
doi: 10.1111/febs.v287.12 URL |
[4] |
Wang PC, Zhao Y, Li ZP, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Mol Cell, 2018, 69(1): 100-112.e6.
doi: S1097-2765(17)30930-9 pmid: 29290610 |
[5] |
Yin XJ, Wang X, Komatsu S. Phosphoproteomics: protein phosphorylation in regulation of seed germination and plant growth[J]. Curr Protein Pept Sci, 2018, 19(4): 401-412.
doi: 10.2174/1389203718666170209151048 URL |
[6] |
Zhang X, Cui YN, Yu M, et al. Phosphorylation-mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth[J]. Plant Physiol, 2019, 181(2): 480-498.
doi: 10.1104/pp.19.00346 pmid: 31431511 |
[7] |
van Wijk KJ, Friso G, Walther D, et al. Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs[J]. Plant Cell, 2014, 26(6): 2367-2389.
doi: 10.1105/tpc.114.125815 URL |
[8] |
Bethke G, Unthan T, Uhrig JF, et al. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling[J]. Proc Natl Acad Sci USA, 2009, 106(19): 8067-8072.
doi: 10.1073/pnas.0810206106 pmid: 19416906 |
[9] |
Tsuda K, Somssich IE. Transcriptional networks in plant immunity[J]. New Phytol, 2015, 206(3): 932-947.
doi: 10.1111/nph.13286 pmid: 25623163 |
[10] |
Guo JR, Sun BX, He HR, et al. Current understanding of bHLH transcription factors in plant abiotic stress tolerance[J]. Int J Mol Sci, 2021, 22(9): 4921.
doi: 10.3390/ijms22094921 URL |
[11] |
Wang HL, Guo SY, Qiao X, et al. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize[J]. PLoS Genet, 2019, 15(8): e1008377.
doi: 10.1371/journal.pgen.1008377 URL |
[12] |
Buti S, Hayes S, Pierik R. The bHLH network underlying plant shade-avoidance[J]. Physiol Plant, 2020, 169(3): 312-324.
doi: 10.1111/ppl.13074 pmid: 32053251 |
[13] |
Li PH, Chen BB, Zhang GY, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytol, 2016, 210(3): 905-921.
doi: 10.1111/nph.2016.210.issue-3 URL |
[14] |
Qian YC, Zhang TY, Yu Y, et al. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses[J]. Front Plant Sci, 2021, 12: 677611.
doi: 10.3389/fpls.2021.677611 URL |
[15] |
Jones S. An overview of the basic helix-loop-helix proteins[J]. Genome Biol, 2004, 5(6): 226.
doi: 10.1186/gb-2004-5-6-226 pmid: 15186484 |
[16] |
Atchley WR, Terhalle W, Dress A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain[J]. J Mol Evol, 1999, 48(5): 501-516.
doi: 10.1007/pl00006494 pmid: 10198117 |
[17] |
Nesi N, Debeaujon I, Jond C, et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell, 2000, 12(10): 1863-1878.
doi: 10.1105/tpc.12.10.1863 pmid: 11041882 |
[18] |
Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J, 2011, 66(1): 94-116.
doi: 10.1111/tpj.2011.66.issue-1 URL |
[19] |
Hao YQ, Zong XM, Ren P, et al. Basic helix-loop-helix(bHLH)transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 7152.
doi: 10.3390/ijms22137152 URL |
[20] |
Groszmann M, Bylstra Y, Lampugnani ER, et al. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis[J]. J Exp Bot, 2010, 61(5): 1495-1508.
doi: 10.1093/jxb/erq015 pmid: 20176890 |
[21] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol, 2010, 153(3): 1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[22] |
Song XM, Huang ZN, Duan WK, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. Mol Genet Genom, 2014, 289(1): 77-91.
doi: 10.1007/s00438-013-0791-3 URL |
[23] |
Sun H, Fan HJ, Ling HQ. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genom, 2015, 16: 9.
doi: 10.1186/s12864-014-1209-2 URL |
[24] |
Waseem M, Li N, Su DD, et al. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato(Solanum lycopersicum L.)[J]. Planta, 2019, 250(1): 173-185.
doi: 10.1007/s00425-019-03157-8 |
[25] |
Du J, Huang ZA, Wang B, et al. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Ann Bot, 2015, 116(1): 23-34.
doi: 10.1093/aob/mcv058 URL |
[26] |
Lau OS, Bergmann DC. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication[J]. Development, 2012, 139(20): 3683-3692.
pmid: 22991435 |
[27] |
Lopez-Anido CB, Vatén A, Smoot NK, et al. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf[J]. Dev Cell, 2021, 56(7): 1043-1055.e4.
doi: 10.1016/j.devcel.2021.03.014 pmid: 33823130 |
[28] |
Lampard GR, MacAlister CA, Bergmann DC. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS[J]. Science, 2008, 322(5904): 1113-1116.
doi: 10.1126/science.1162263 URL |
[29] |
Yang KZ, Jiang M, Wang M, et al. Phosphorylation of serine 186 of bHLH transcription factor SPEECHLESS promotes stomatal development in Arabidopsis[J]. Mol Plant, 2015, 8(5): 783-795.
doi: 10.1016/j.molp.2014.12.014 URL |
[30] | 周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制[J]. 作物研究, 2012, 26(5): 605-610. |
Zhou XJ, Chen RM, Fan YL. Molecular mechanism of iron uptake, translocation and storage in plants[J]. Crop Res, 2012, 26(5): 605-610. | |
[31] |
Connorton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview[J]. Metallomics, 2017, 9(7): 813-823.
doi: 10.1039/c7mt00136c pmid: 28686269 |
[32] |
Mai HJ, Pateyron S, Bauer P. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks[J]. BMC Plant Biol, 2016, 16(1): 211.
doi: 10.1186/s12870-016-0899-9 URL |
[33] |
Gratz R, Manishankar P, Ivanov R, et al. CIPK11-dependent phosphorylation modulates FIT activity to promote Arabidopsis iron acquisition in response to calcium signaling[J]. Dev Cell, 2019, 48(5): 726-740.e10.
doi: 10.1016/j.devcel.2019.01.006 URL |
[34] |
Gratz R, Brumbarova T, Ivanov R, et al. Phospho-mutant activity assays provide evidence for alternative phospho-regulation pathways of the transcription factor Fer-like iron deficiency-induced transcription factor[J]. New Phytol, 2020, 225(1): 250-267.
doi: 10.1111/nph.v225.1 URL |
[35] |
Naranjo-Arcos MA, Maurer F, Meiser J, et al. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein[J]. Sci Rep, 2017, 7(1): 10911.
doi: 10.1038/s41598-017-11171-7 pmid: 28883478 |
[36] |
Legris M, Ince YÇ, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants[J]. Nat Commun, 2019, 10(1): 5219.
doi: 10.1038/s41467-019-13045-0 pmid: 31745087 |
[37] |
Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development[J]. Trends Cell Biol, 2011, 21(11): 664-671.
doi: 10.1016/j.tcb.2011.07.002 pmid: 21852137 |
[38] |
Leivar P, Monte E. PIFs: systems integrators in plant development[J]. Plant Cell, 2014, 26(1): 56-78.
doi: 10.1105/tpc.113.120857 URL |
[39] |
Lee N, Park J, Kim K, et al. The transcriptional coregulator LEUNIG_HOMOLOG inhibits light-dependent seed germination in Arabidopsis[J]. Plant Cell, 2015, 27(8): 2301-2313.
doi: 10.1105/tpc.15.00444 URL |
[40] |
Shi H, Zhong SW, Mo XR, et al. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis[J]. Plant Cell, 2013, 25(10): 3770-3784.
doi: 10.1105/tpc.113.117424 URL |
[41] |
Pham VN, Kathare PK, Huq E. Phytochromes and phytochrome interacting factors[J]. Plant Physiol, 2018, 176(2): 1025-1038.
doi: 10.1104/pp.17.01384 pmid: 29138351 |
[42] |
Xu XS, Paik I, Zhu L, et al. Illuminating progress in phytochrome-mediated light signaling pathways[J]. Trends Plant Sci, 2015, 20(10): 641-650.
doi: S1360-1385(15)00174-0 pmid: 26440433 |
[43] |
Paik I, Chen FL, Ngoc Pham V, et al. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis[J]. Nat Commun, 2019, 10(1): 4216.
doi: 10.1038/s41467-019-12110-y |
[44] |
Ni WM, Xu SL, Chalkley RJ, et al. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis[J]. Plant Cell, 2013, 25(7): 2679-2698.
doi: 10.1105/tpc.113.112342 URL |
[45] |
Li L, Ljung K, Breton G, et al. Linking photoreceptor excitation to changes in plant architecture[J]. Genes Dev, 2012, 26(8): 785-790.
doi: 10.1101/gad.187849.112 URL |
[46] |
Holtkotte X, Dieterle S, Kokkelink L, et al. Mutations in the N-terminal kinase-like domain of the repressor of photomorphogenesis SPA1 severely impair SPA1 function but not light responsiveness in Arabidopsis[J]. Plant J, 2016, 88(2): 205-218.
doi: 10.1111/tpj.2016.88.issue-2 URL |
[47] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[48] |
Bailey PC, Martin C, Toledo-Ortiz G, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. Plant Cell, 2003, 15(11): 2497-2502.
pmid: 14600211 |
[49] |
Li H, Ding YL, Shi YT, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis[J]. Dev Cell, 2017, 43(5): 630-642.e4.
doi: 10.1016/j.devcel.2017.09.025 URL |
[50] |
Zhao CZ, Wang PC, Si T, et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability[J]. Dev Cell, 2017, 43(5): 618-629.e5.
doi: S1534-5807(17)30783-9 pmid: 29056551 |
[51] |
Zhang ZY, Li JH, Li F, et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance[J]. Dev Cell, 2017, 43(6): 731-743.e5.
doi: S1534-5807(17)30951-6 pmid: 29257952 |
[52] |
Ding YL, Li H, Zhang XY, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015, 32(3): 278-289.
doi: 10.1016/j.devcel.2014.12.023 URL |
[53] |
Goossens J, Mertens J, Goossens A. Role and functioning of bHLH transcription factors in jasmonate signalling[J]. J Exp Bot, 2017, 68(6): 1333-1347.
doi: 10.1093/jxb/erw440 pmid: 27927998 |
[54] |
Chen Q, Sun JQ, Zhai QZ, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. Plant Cell, 2011, 23(9): 3335-3352.
doi: 10.1105/tpc.111.089870 URL |
[55] |
Sheard LB, Tan X, Mao HB, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405.
doi: 10.1038/nature09430 |
[56] | An CP, Li L, Zhai QZ, et al. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin[J]. Proc Natl Acad Sci USA, 2017, 114(42): E8930-E8939. |
[57] |
Wang H, Li SY, Li YA, et al. MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling[J]. Nat Plants, 2019, 5(6): 616-625.
doi: 10.1038/s41477-019-0441-9 pmid: 31182849 |
[58] |
Zander M, Lewsey MG, Clark NM, et al. Integrated multi-omics framework of the plant response to jasmonic acid[J]. Nat Plants, 2020, 6(3): 290-302.
doi: 10.1038/s41477-020-0605-7 pmid: 32170290 |
[59] |
Liu YY, Du MM, Deng L, et al. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop[J]. Plant Cell, 2019, 31(1): 106-127.
doi: 10.1105/tpc.18.00405 URL |
[60] |
Song C, Cao YP, Dai J, et al. The multifaceted roles of MYC2 in plants: toward transcriptional reprogramming and stress tolerance by jasmonate signaling[J]. Front Plant Sci, 2022, 13: 868874.
doi: 10.3389/fpls.2022.868874 URL |
[61] |
Shin J, Heidrich K, Sanchez-Villarreal A, et al. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2470-2482.
doi: 10.1105/tpc.111.095430 URL |
[62] |
Chico JM, Fernández-Barbero G, Chini A, et al. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis[J]. Plant Cell, 2014, 26(5): 1967-1980.
doi: 10.1105/tpc.114.125047 URL |
[63] |
Zhai QZ, Yan LH, Tan D, et al. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity[J]. PLoS Genet, 2013, 9(4): e1003422.
doi: 10.1371/journal.pgen.1003422 URL |
[64] |
Guo HQ, Nolan TM, Song GY, et al. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana[J]. Curr Biol, 2018, 28(20): 3316-3324.e6.
doi: 10.1016/j.cub.2018.07.078 URL |
[65] |
Wang MM, Tian YC, Han C, et al. Phospho-mutant activity assays provide evidence for the negative regulation of transcriptional regulator PRE1 by phosphorylation[J]. Int J Mol Sci, 2020, 21(23): 9183.
doi: 10.3390/ijms21239183 URL |
[66] |
Zhu L, Bu QY, Xu XS, et al. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1[J]. Nat Commun, 2015, 6: 7245.
doi: 10.1038/ncomms8245 pmid: 26037329 |
[67] |
Jeong JS, Jung C, Seo JS, et al. The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses[J]. Plant Cell, 2017, 29(6): 1406-1424.
doi: 10.1105/tpc.17.00216 URL |
[68] |
An JP, Zhang XW, Bi SQ, et al. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways[J]. New Phytol, 2019, 222(2): 735-751.
doi: 10.1111/nph.2019.222.issue-2 URL |
[1] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[2] | LIANG Xing-xing, WANG Jia, XU Wen-tao. Research Progress in Phosphorylation Modification of Antiviral Nucleotide Analogs [J]. Biotechnology Bulletin, 2022, 38(2): 218-226. |
[3] | ZHAO A-hui, WANG Xian-guo, DONG Jian, HOU Zuo, ZHAO Wan-chun, GAO Xiang, YANG Ming-ming. Advances in the Study of Phospholipase C Response to Stress in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 154-164. |
[4] | LIU Jing, LI Ya-chao, ZHOU Meng-yan, WU Peng-fei, MA Xiang-qing, LI Ming. Advances in the Studies of Plant Protein Post-translational Modification [J]. Biotechnology Bulletin, 2021, 37(1): 67-76. |
[5] | HOU Cheng-lin, YANG Yan-kun, CHEN Jia-li, BAI Zhong-hu. Preliminary Study on the Regulation of Mxr1 Phosphorylation by Ptp [J]. Biotechnology Bulletin, 2019, 35(7): 108-113. |
[6] | LI Chun, SUN Chun-yu, CHEN Jing, LIN Yan-ping, WANG Yi, ZHANG Mei-ping. Research Advances in the Major Facilitator Superfamily [J]. Biotechnology Bulletin, 2018, 34(8): 43-49. |
[7] | LI Lu-lu, QU Chang-feng, ZHENG Zhou, WANG Yi-bin, MIAO Jin-lai, ZHANG Li. Study Advances on the Algal Aquaporins [J]. Biotechnology Bulletin, 2017, 33(8): 1-6. |
[8] | YUAN Min, QI Yu-rong ,WANG Rui-ju. Purification and Activity Analysis of Tag-free Protein Kinase BIN2 [J]. Biotechnology Bulletin, 2017, 33(7): 145-149. |
[9] | HUA Xiao-yu, TAO Shuang, SUN Sheng-nan, GUO Na, YAN Xiu-feng, LIN Ji-xiang. Research Progress on Phenolic Compounds of Plant Secondary Metabolites [J]. Biotechnology Bulletin, 2017, 33(12): 22-29. |
[10] | CHENG Qing-ling, WANG Jing-qiang. Identification of Two Novel Phosphorylated Sites of Homeoprotein Msx1 [J]. Biotechnology Bulletin, 2016, 32(6): 211-218. |
[11] | LIU Yan, MENG Zhi-gang, SUN Guo-qing, WANG Yuan, ZHOU Tao, GUO San-dui, ZHANG Rui. Cloning and Function Analysis of Gene GhPYR1 in Gossypium hirsutum L. [J]. Biotechnology Bulletin, 2016, 32(2): 90-99. |
[12] | Wu Ruirui Zhu Fuxing. SarA Family Proteins and Its Post-Translational Modification in Staphylococcus aureus [J]. Biotechnology Bulletin, 2013, 0(10): 40-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||