Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 283-296.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0531
Previous Articles Next Articles
FENG Ce-ting(), JIANG Lyu, LIU Xin-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao()
Received:
2023-06-05
Online:
2023-11-26
Published:
2023-12-20
Contact:
YU Chao
E-mail:fengceting@qq.com;yuchao@bjfu.edu.cn
FENG Ce-ting, JIANG Lyu, LIU Xin-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress[J]. Biotechnology Bulletin, 2023, 39(11): 283-296.
基因Gene | 基因ID Gene ID | 正向引物Forward primer(5'-3') | 反向引物序列Reverse primer(5'-3') |
---|---|---|---|
GAPDH | ATCCATTCATCACCACCGACTACA | GCATCCTTACTTGGGGCAGAGA | |
RbeNAC71 | Rbe024972 | TGAAATGAATAAAGAGGCACAGGG | GCAACGCATTACAGTCACCA |
RbeNAC89 | Rbe024974 | ATTCCAGCCACAAGATTCCACA | TTGAAAGGAGTCTGTGCTGTTTG |
RbeNAC90 | Rbe028302 | AGACGACCTTCAGGCATTGG | TTGGAGCAGCTGGGATGATG |
RbeATAF | Rbe007404 | TTCGATCCGTGGCAGTTACC | CAATGTGCTTGTCTGCTCCG |
RbeNAC72 | Rbe002086 | ACAGGTTCTTCACTCTGCCG | CTTGTCCTTGGGCTTGGGTA |
RbeSOG1 | Rbe021851 | ACACTGGAACTCGAAAGCGT | TCTCAGCTTTGCCGCCTTTA |
RbeNAC17 | Rbe011929 | TGGGTCCTGAACCTTCAAACA | TGGAGGTGCTGGTTGTATCTG |
RbeNAC53 | Rbe023720 | GCCTGACGTGAAATTTGGACC | ATCATGCCAGCACGAACTGA |
RbeNAC96 | Rbe010166 | TGGGAACATGGATCGAGGGA | TCGGATGAGCGCTTGTTCTT |
Table 1 Primer information for selected R. persica NAC and reference genes
基因Gene | 基因ID Gene ID | 正向引物Forward primer(5'-3') | 反向引物序列Reverse primer(5'-3') |
---|---|---|---|
GAPDH | ATCCATTCATCACCACCGACTACA | GCATCCTTACTTGGGGCAGAGA | |
RbeNAC71 | Rbe024972 | TGAAATGAATAAAGAGGCACAGGG | GCAACGCATTACAGTCACCA |
RbeNAC89 | Rbe024974 | ATTCCAGCCACAAGATTCCACA | TTGAAAGGAGTCTGTGCTGTTTG |
RbeNAC90 | Rbe028302 | AGACGACCTTCAGGCATTGG | TTGGAGCAGCTGGGATGATG |
RbeATAF | Rbe007404 | TTCGATCCGTGGCAGTTACC | CAATGTGCTTGTCTGCTCCG |
RbeNAC72 | Rbe002086 | ACAGGTTCTTCACTCTGCCG | CTTGTCCTTGGGCTTGGGTA |
RbeSOG1 | Rbe021851 | ACACTGGAACTCGAAAGCGT | TCTCAGCTTTGCCGCCTTTA |
RbeNAC17 | Rbe011929 | TGGGTCCTGAACCTTCAAACA | TGGAGGTGCTGGTTGTATCTG |
RbeNAC53 | Rbe023720 | GCCTGACGTGAAATTTGGACC | ATCATGCCAGCACGAACTGA |
RbeNAC96 | Rbe010166 | TGGGAACATGGATCGAGGGA | TCGGATGAGCGCTTGTTCTT |
基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | 基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | |
---|---|---|---|---|---|---|---|---|
Rbe000437 | 238 | 9.50 | 26742.40 | Rbe015425 | 376 | 6.67 | 42077.99 | |
Rbe000577 | 342 | 7.78 | 38395.04 | Rbe015545 | 399 | 5.81 | 45802.91 | |
Rbe001198 | 307 | 8.95 | 35352.84 | Rbe015576 | 732 | 5.11 | 82140.75 | |
Rbe001377 | 362 | 7.02 | 41371.16 | Rbe015696 | 231 | 8.84 | 26081.39 | |
Rbe001406 | 347 | 4.97 | 39490.91 | Rbe016577 | 346 | 5.96 | 39956.38 | |
Rbe001560 | 322 | 8.05 | 36896.91 | Rbe016791 | 197 | 4.87 | 22500.07 | |
Rbe001607 | 291 | 8.11 | 32702.45 | Rbe016986 | 368 | 5.39 | 42000.66 | |
Rbe001675 | 97 | 6.90 | 11254.85 | Rbe017102 | 443 | 4.59 | 49942.32 | |
Rbe001680 | 252 | 5.82 | 29423.90 | Rbe017312 | 223 | 8.43 | 25796.15 | |
Rbe001684 | 181 | 9.94 | 21272.39 | Rbe017370 | 348 | 4.76 | 39766.49 | |
Rbe001687 | 213 | 5.63 | 24822.67 | Rbe017374 | 431 | 4.63 | 49283.85 | |
Rbe001793 | 458 | 4.86 | 52053.89 | Rbe017385 | 444 | 4.55 | 50806.24 | |
Rbe001840 | 357 | 5.06 | 41560.98 | Rbe017419 | 403 | 6.36 | 44863.19 | |
Rbe001892 | 410 | 4.44 | 47117.37 | Rbe017564 | 414 | 6.55 | 47093.99 | |
Rbe001938 | 360 | 8.09 | 40478.45 | Rbe017971 | 197 | 4.73 | 22842.29 | |
Rbe001942 | 413 | 4.44 | 47485.04 | Rbe018482 | 338 | 8.70 | 38084.18 | |
Rbe002086 | 360 | 8.64 | 40516.77 | Rbe019654 | 172 | 7.82 | 19889.40 | |
Rbe002090 | 342 | 7.77 | 38420.98 | Rbe021391 | 251 | 9.07 | 28538.35 | |
Rbe002324 | 310 | 5.57 | 36546.13 | Rbe021851 | 458 | 5.08 | 51616.50 | |
Rbe002753 | 476 | 4.30 | 54814.79 | Rbe022037 | 201 | 8.59 | 22769.20 | |
Rbe002755 | 353 | 4.41 | 40705.39 | Rbe022113 | 287 | 8.63 | 32863.08 | |
Rbe002766 | 258 | 7.70 | 29401.71 | Rbe022146 | 457 | 6.70 | 50844.68 | |
Rbe002769 | 254 | 6.46 | 28883.99 | Rbe023180 | 404 | 4.92 | 45588.37 | |
Rbe002801 | 383 | 6.68 | 43138.51 | Rbe023181 | 484 | 4.91 | 55066.39 | |
Rbe003148 | 547 | 5.44 | 62129.20 | Rbe023665 | 484 | 4.68 | 54311.74 | |
Rbe003554 | 346 | 6.68 | 39376.24 | Rbe023667 | 411 | 5.68 | 47110.37 | |
Rbe005498 | 495 | 6.65 | 55920.03 | Rbe023679 | 152 | 4.50 | 17723.53 | |
Rbe006018 | 362 | 5.06 | 41346.93 | Rbe023719 | 621 | 5.81 | 67734.40 | |
Rbe006711 | 135 | 7.67 | 15864.06 | Rbe023720 | 593 | 4.63 | 66279.49 | |
Rbe007404 | 315 | 6.55 | 36127.66 | Rbe024330 | 314 | 6.17 | 36186.69 | |
Rbe007596 | 577 | 5.40 | 64238.73 | Rbe024403 | 583 | 4.65 | 66052.22 | |
Rbe007658 | 379 | 8.97 | 41903.52 | Rbe024932 | 420 | 5.93 | 47167.13 | |
Rbe008463 | 443 | 8.48 | 49552.51 | Rbe024933 | 348 | 5.97 | 39746.40 | |
Rbe008464 | 224 | 8.22 | 24996.02 | Rbe024970 | 610 | 4.74 | 68426.60 | |
Rbe008978 | 334 | 8.05 | 38419.03 | Rbe024971 | 509 | 4.62 | 56551.30 | |
Rbe009057 | 364 | 4.56 | 41960.70 | Rbe024972 | 309 | 5.75 | 34860.02 | |
Rbe009768 | 193 | 7.80 | 22531.76 | Rbe024973 | 248 | 4.67 | 27472.93 | |
Rbe009867 | 335 | 6.34 | 38111.56 | Rbe024974 | 525 | 5.44 | 60098.24 | |
Rbe009920 | 363 | 7.00 | 40900.71 | Rbe024976 | 576 | 5.06 | 64862.49 | |
Rbe010166 | 251 | 9.17 | 29202.10 | Rbe024978 | 618 | 4.44 | 68573.07 | |
Rbe010181 | 404 | 5.53 | 45245.49 | Rbe024980 | 475 | 4.75 | 53362.64 | |
Rbe010351 | 281 | 9.59 | 32122.23 | Rbe024981 | 451 | 5.11 | 50390.38 | |
Rbe010428 | 406 | 6.68 | 46160.96 | Rbe024984 | 477 | 6.08 | 53897.88 | |
Rbe011929 | 592 | 4.88 | 66676.94 | Rbe024986 | 325 | 6.09 | 37252.33 | |
Rbe012001 | 382 | 5.16 | 42689.74 | Rbe025006 | 348 | 6.07 | 39640.32 | |
Rbe012002 | 442 | 4.69 | 49961.94 | Rbe025809 | 333 | 6.31 | 38592.32 | |
Rbe012071 | 344 | 4.39 | 40039.95 | Rbe026285 | 567 | 5.09 | 63339.26 | |
Rbe012355 | 309 | 6.11 | 35776.03 | Rbe026837 | 241 | 5.85 | 27548.43 | |
Rbe012668 | 577 | 4.81 | 66799.58 | Rbe027180 | 296 | 5.97 | 34483.57 | |
Rbe012863 | 285 | 5.61 | 32829.91 | Rbe027926 | 357 | 8.32 | 40962.22 | |
Rbe013487 | 290 | 7.58 | 33044.33 | Rbe028089 | 498 | 5.57 | 55555.28 | |
Rbe013835 | 377 | 8.17 | 41907.56 | Rbe028302 | 291 | 6.61 | 32585.37 | |
Rbe014245 | 350 | 8.92 | 39026.85 | Rbe028714 | 654 | 5.59 | 76078.14 | |
Rbe014438 | 279 | 7.10 | 31333.13 | Rbe028715 | 172 | 8.56 | 20262.10 | |
Rbe014843 | 99 | 4.43 | 11155.44 | Rbe028783 | 429 | 7.72 | 48014.20 | |
Rbe014844 | 321 | 7.57 | 36154.30 | Rbe029101 | 687 | 5.64 | 78005.28 | |
Rbe015173 | 353 | 7.12 | 40042.08 | Rbe029577 | 465 | 6.07 | 51857.88 | |
Rbe015176 | 590 | 6.06 | 66049.28 | Rbe029972 | 395 | 7.13 | 44952.76 | |
Rbe015232 | 171 | 7.77 | 19860.37 | Rbe030070 | 433 | 4.51 | 48946.22 |
Table 2 Gene information of NAC transcription factor family in R. persica
基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | 基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | |
---|---|---|---|---|---|---|---|---|
Rbe000437 | 238 | 9.50 | 26742.40 | Rbe015425 | 376 | 6.67 | 42077.99 | |
Rbe000577 | 342 | 7.78 | 38395.04 | Rbe015545 | 399 | 5.81 | 45802.91 | |
Rbe001198 | 307 | 8.95 | 35352.84 | Rbe015576 | 732 | 5.11 | 82140.75 | |
Rbe001377 | 362 | 7.02 | 41371.16 | Rbe015696 | 231 | 8.84 | 26081.39 | |
Rbe001406 | 347 | 4.97 | 39490.91 | Rbe016577 | 346 | 5.96 | 39956.38 | |
Rbe001560 | 322 | 8.05 | 36896.91 | Rbe016791 | 197 | 4.87 | 22500.07 | |
Rbe001607 | 291 | 8.11 | 32702.45 | Rbe016986 | 368 | 5.39 | 42000.66 | |
Rbe001675 | 97 | 6.90 | 11254.85 | Rbe017102 | 443 | 4.59 | 49942.32 | |
Rbe001680 | 252 | 5.82 | 29423.90 | Rbe017312 | 223 | 8.43 | 25796.15 | |
Rbe001684 | 181 | 9.94 | 21272.39 | Rbe017370 | 348 | 4.76 | 39766.49 | |
Rbe001687 | 213 | 5.63 | 24822.67 | Rbe017374 | 431 | 4.63 | 49283.85 | |
Rbe001793 | 458 | 4.86 | 52053.89 | Rbe017385 | 444 | 4.55 | 50806.24 | |
Rbe001840 | 357 | 5.06 | 41560.98 | Rbe017419 | 403 | 6.36 | 44863.19 | |
Rbe001892 | 410 | 4.44 | 47117.37 | Rbe017564 | 414 | 6.55 | 47093.99 | |
Rbe001938 | 360 | 8.09 | 40478.45 | Rbe017971 | 197 | 4.73 | 22842.29 | |
Rbe001942 | 413 | 4.44 | 47485.04 | Rbe018482 | 338 | 8.70 | 38084.18 | |
Rbe002086 | 360 | 8.64 | 40516.77 | Rbe019654 | 172 | 7.82 | 19889.40 | |
Rbe002090 | 342 | 7.77 | 38420.98 | Rbe021391 | 251 | 9.07 | 28538.35 | |
Rbe002324 | 310 | 5.57 | 36546.13 | Rbe021851 | 458 | 5.08 | 51616.50 | |
Rbe002753 | 476 | 4.30 | 54814.79 | Rbe022037 | 201 | 8.59 | 22769.20 | |
Rbe002755 | 353 | 4.41 | 40705.39 | Rbe022113 | 287 | 8.63 | 32863.08 | |
Rbe002766 | 258 | 7.70 | 29401.71 | Rbe022146 | 457 | 6.70 | 50844.68 | |
Rbe002769 | 254 | 6.46 | 28883.99 | Rbe023180 | 404 | 4.92 | 45588.37 | |
Rbe002801 | 383 | 6.68 | 43138.51 | Rbe023181 | 484 | 4.91 | 55066.39 | |
Rbe003148 | 547 | 5.44 | 62129.20 | Rbe023665 | 484 | 4.68 | 54311.74 | |
Rbe003554 | 346 | 6.68 | 39376.24 | Rbe023667 | 411 | 5.68 | 47110.37 | |
Rbe005498 | 495 | 6.65 | 55920.03 | Rbe023679 | 152 | 4.50 | 17723.53 | |
Rbe006018 | 362 | 5.06 | 41346.93 | Rbe023719 | 621 | 5.81 | 67734.40 | |
Rbe006711 | 135 | 7.67 | 15864.06 | Rbe023720 | 593 | 4.63 | 66279.49 | |
Rbe007404 | 315 | 6.55 | 36127.66 | Rbe024330 | 314 | 6.17 | 36186.69 | |
Rbe007596 | 577 | 5.40 | 64238.73 | Rbe024403 | 583 | 4.65 | 66052.22 | |
Rbe007658 | 379 | 8.97 | 41903.52 | Rbe024932 | 420 | 5.93 | 47167.13 | |
Rbe008463 | 443 | 8.48 | 49552.51 | Rbe024933 | 348 | 5.97 | 39746.40 | |
Rbe008464 | 224 | 8.22 | 24996.02 | Rbe024970 | 610 | 4.74 | 68426.60 | |
Rbe008978 | 334 | 8.05 | 38419.03 | Rbe024971 | 509 | 4.62 | 56551.30 | |
Rbe009057 | 364 | 4.56 | 41960.70 | Rbe024972 | 309 | 5.75 | 34860.02 | |
Rbe009768 | 193 | 7.80 | 22531.76 | Rbe024973 | 248 | 4.67 | 27472.93 | |
Rbe009867 | 335 | 6.34 | 38111.56 | Rbe024974 | 525 | 5.44 | 60098.24 | |
Rbe009920 | 363 | 7.00 | 40900.71 | Rbe024976 | 576 | 5.06 | 64862.49 | |
Rbe010166 | 251 | 9.17 | 29202.10 | Rbe024978 | 618 | 4.44 | 68573.07 | |
Rbe010181 | 404 | 5.53 | 45245.49 | Rbe024980 | 475 | 4.75 | 53362.64 | |
Rbe010351 | 281 | 9.59 | 32122.23 | Rbe024981 | 451 | 5.11 | 50390.38 | |
Rbe010428 | 406 | 6.68 | 46160.96 | Rbe024984 | 477 | 6.08 | 53897.88 | |
Rbe011929 | 592 | 4.88 | 66676.94 | Rbe024986 | 325 | 6.09 | 37252.33 | |
Rbe012001 | 382 | 5.16 | 42689.74 | Rbe025006 | 348 | 6.07 | 39640.32 | |
Rbe012002 | 442 | 4.69 | 49961.94 | Rbe025809 | 333 | 6.31 | 38592.32 | |
Rbe012071 | 344 | 4.39 | 40039.95 | Rbe026285 | 567 | 5.09 | 63339.26 | |
Rbe012355 | 309 | 6.11 | 35776.03 | Rbe026837 | 241 | 5.85 | 27548.43 | |
Rbe012668 | 577 | 4.81 | 66799.58 | Rbe027180 | 296 | 5.97 | 34483.57 | |
Rbe012863 | 285 | 5.61 | 32829.91 | Rbe027926 | 357 | 8.32 | 40962.22 | |
Rbe013487 | 290 | 7.58 | 33044.33 | Rbe028089 | 498 | 5.57 | 55555.28 | |
Rbe013835 | 377 | 8.17 | 41907.56 | Rbe028302 | 291 | 6.61 | 32585.37 | |
Rbe014245 | 350 | 8.92 | 39026.85 | Rbe028714 | 654 | 5.59 | 76078.14 | |
Rbe014438 | 279 | 7.10 | 31333.13 | Rbe028715 | 172 | 8.56 | 20262.10 | |
Rbe014843 | 99 | 4.43 | 11155.44 | Rbe028783 | 429 | 7.72 | 48014.20 | |
Rbe014844 | 321 | 7.57 | 36154.30 | Rbe029101 | 687 | 5.64 | 78005.28 | |
Rbe015173 | 353 | 7.12 | 40042.08 | Rbe029577 | 465 | 6.07 | 51857.88 | |
Rbe015176 | 590 | 6.06 | 66049.28 | Rbe029972 | 395 | 7.13 | 44952.76 | |
Rbe015232 | 171 | 7.77 | 19860.37 | Rbe030070 | 433 | 4.51 | 48946.22 |
Fig. 8 Expression analysis of NAC transcription factors in R. persica A: Heat map of drought stress response; B: gene expression trends; C: total gene expression levels in different samples
Fig. 9 NAC gene expressions in the roots and leaves of R. persica under drought stress GADPH is used as internal reference. Error bars are the standard deviation(SD). Different lowercase letters represent significant differences (P<0.05). CK is the control group, LS is the mild drought stress group and SS is the severe drought stress group
[1] |
Puranik S, Sahu PP, Srivastava PS, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends Plant Sci, 2012, 17(6): 369-381.
doi: 10.1016/j.tplants.2012.02.004 pmid: 22445067 |
[2] |
Zhang L, Yao L, Zhang N, et al. Lateral root development in potato is mediated by stu-mi164 regulation of NAC transcription factor[J]. Front Plant Sci, 2018, 9: 383.
doi: 10.3389/fpls.2018.00383 pmid: 29651294 |
[3] |
Kucukoglu M. A novel NAC domain transcription factor XVP controls the balance of xylem formation and cambial cell divisions[J]. New Phytol, 2020, 226(1): 5-7.
doi: 10.1111/nph.16400 pmid: 31960459 |
[4] |
El Mannai Y, Akabane K, Hiratsu K, et al. The NAC transcription factor gene OsY37(ONAC011)promotes leaf senescence and accelerates heading time in rice[J]. Int J Mol Sci, 2017, 18(10): 2165.
doi: 10.3390/ijms18102165 URL |
[5] |
Liu GS, Li HL, Grierson D, et al. NAC transcription factor family regulation of fruit ripening and quality: a review[J]. Cells, 2022, 11(3): 525.
doi: 10.3390/cells11030525 URL |
[6] |
Wang JF, Wang YP, Zhang JE, et al. Correction: the NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6[J]. Hortic Res, 2021, 8(1)214.
doi: 10.1038/s41438-021-00649-1 URL |
[7] |
Li M, Wu ZY, Gu H, et al. AvNAC030, a NAC domain transcription factor, enhances salt stress tolerance in kiwifruit[J]. Int J Mol Sci, 2021, 22(21): 11897.
doi: 10.3390/ijms222111897 URL |
[8] |
Wang ZQ, Ni LJ, Liu DN, et al. Genome-wide identification and characterization of NAC family in Hibiscus hamabo Sieb. et Zucc. under various abiotic stresses[J]. Int J Mol Sci, 2022, 23(6): 3055.
doi: 10.3390/ijms23063055 URL |
[9] |
Guo WW, Zhang JX, Zhang N, et al. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8): e0135667.
doi: 10.1371/journal.pone.0135667 URL |
[10] |
Yan HF, Ma GH, Teixeira da Silva JA, et al. Genome-wide identification and analysis of NAC transcription factor family in two diploid wild relatives of cultivated sweet potato uncovers potential NAC genes related to drought tolerance[J]. Front Genet, 2021, 12: 744220.
doi: 10.3389/fgene.2021.744220 URL |
[11] |
Li WH, Zeng YL, Yin FL, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress[J]. Sci Rep. 2021, 11(1):19865.
doi: 10.1038/s41598-021-98107-4 pmid: 34615898 |
[12] |
Geng LF, Su L, Fu LF, et al. Genome-wide analysis of the rose(Rosa chinensis)NAC family and characterization of RcNAC091[J]. Plant Mol Biol, 2022, 108(6): 605-619.
doi: 10.1007/s11103-022-01250-3 |
[13] |
Jia DF, Jiang Q, van Nocker S, et al. An apple(Malus domestica)NAC transcription factor enhances drought tolerance in transgenic apple plants[J]. Plant Physiol Biochem, 2019, 139: 504-512.
doi: 10.1016/j.plaphy.2019.04.011 URL |
[14] |
Tran LS P, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2481-2498.
doi: 10.1105/tpc.104.022699 URL |
[15] |
Yang CF, Huang YZ, Lv PY, et al. NAC transcription factor GmNAC12 improved drought stress tolerance in soybean[J]. Int J Mol Sci, 2022, 23(19): 12029.
doi: 10.3390/ijms231912029 URL |
[16] |
Park S, Im J, Park S, et al. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula[J]. Agric For Meteorol, 2017, 237/238: 257-269.
doi: 10.1016/j.agrformet.2017.02.022 URL |
[17] | 罗广科. 梭梭NAC转录因子HaNAC38功能及结合特性分析[D]. 乌鲁木齐: 新疆农业大学, 2022. |
Luo GK. Analysis of the function and binding properties of A NAC transcription factor HaNAC38 in Haloxylon ammodendron[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[18] |
Zhao WZ, Hu GL, Zhang ZH, et al. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: a case study in the Hexi Corridor, northwest China[J]. Ecol Eng, 2008, 33(2): 119-125.
doi: 10.1016/j.ecoleng.2008.02.010 URL |
[19] | Harkness J. Breeding with hulthemia persica(Rosa persica)[J]. The Australian Rose Annual, 1977, 62:123-130. |
[20] |
Vaezi J, Arjmandi AA, Sharghi HR. Origin of Rosa × binaloudensis(Rosaceae), a new natural hybrid species from Iran[J]. Phytotaxa, 2019, 411(1): 23-38.
doi: 10.11646/phytotaxa.411.1 URL |
[21] | 刘鑫颖, 冯策婷, 杨晨, 等. 带花斑现代月季育种研究进展[J]. 江苏农业学报, 2022, 38(5): 1432-1440. |
Liu XY, Feng CT, Yang C, et al. Research progress on breeding of modern rose cultivars with floral blotches[J]. Jiangsu J Agric Sci, 2022, 38(5): 1432-1440. | |
[22] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇生物学特性分析[J]. 山东林业科技, 2013, 43(4): 61-63. |
Hui JA, Zhang X, Wang SM. Analysis of biological characteristics of wild hulthemia berberifolia(pall.) dumort. in Xinjiang[J]. J Shandong For Sci Technol, 2013, 43(4): 61-63. | |
[23] | 张晓龙, 邓童, 刘学森, 等. 单叶蔷薇幼苗根系对不同潜水埋深的适应机制[J]. 生态学报, 2022, 42(15): 6137-6149. |
Zhang XL, Deng T, Liu XS, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecol Sin, 2022, 42(15): 6137-6149. | |
[24] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的显微结构特征[J]. 江苏农业科学, 2014, 42(3): 126-127. |
Hui JA, Zhang X, Wang SM. Microstructure characteristics of wild Rosa simplex in Xinjiang[J]. Jiangsu Agric Sci, 2014, 42(3): 126-127. | |
[25] | 孙彦琳, 于超, 罗乐, 等. 单叶蔷薇bZIP转录因子家族鉴定与表达分析[J]. 西北农林科技大学学报: 自然科学版, 2022, 50(6): 82-92. |
Sun YL, Yu C, Luo L, et al. Identification and expression analysis of bZIP transcription factor family in Rosa persica[J]. J Northwest A F Univ, 2022, 50(6): 82-92. | |
[26] |
Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247.
doi: 10.1093/dnares/10.6.239 URL |
[27] |
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T)method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
doi: 10.1038/nprot.2008.73 pmid: 18546601 |
[28] |
Mao HD, Li SM, Chen B, et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat[J]. Mol Plant, 2022, 15(2): 276-292.
doi: 10.1016/j.molp.2021.11.007 URL |
[29] |
Gong X, Zhao LY, Song XF, et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear(Pyrus bretschneideri)[J]. BMC Plant Biol, 2019, 19(1): 1-18.
doi: 10.1186/s12870-018-1600-2 |
[30] |
Su HY, Zhang SZ, Yuan XW, et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple[J]. Plant Physiol Biochem, 2013, 71: 11-21.
doi: 10.1016/j.plaphy.2013.06.022 URL |
[31] |
Zhuo XK, Zheng TC, Zhang ZY, et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes, 2018, 9(10): 494.
doi: 10.3390/genes9100494 URL |
[32] |
由玉婉, 张雨, 孙嘉毅, 等. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911.
doi: 10.3864/j.issn.0578-1752.2022.24.009 |
You YW, Zhang Y, Sun JY, et al. Genome-wide identification of NAC family and screening of its members related to prickle development in Rosa chinensis old blush[J]. Sci Agric Sin, 2022, 55(24): 4895-4911. | |
[33] |
Moyano E, Martínez-Rivas FJ, Blanco-Portales R, et al. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits[J]. PLoS One, 2018, 13(5): e0196953.
doi: 10.1371/journal.pone.0196953 URL |
[34] |
Fan K, Li F, Chen JH, et al. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton[J]. Front Plant Sci, 2018, 9: 47.
doi: 10.3389/fpls.2018.00047 pmid: 29441080 |
[41] |
Yong YB, Zhang Y, Lyu YM. A stress-responsive NAC transcription factor from tiger lily(LlNAC2)interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. Int J Mol Sci, 2019, 20(13): 3225.
doi: 10.3390/ijms20133225 URL |
[42] |
Jiang GM, Jiang XQ, Lü PT, et al. The rose(Rosa hybrida)NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis[J]. PLoS One, 2014, 9(10): e109415.
doi: 10.1371/journal.pone.0109415 URL |
[43] |
Jia X, Zeng Z, Lyu YM, et al. Drought-responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in Arabidopsis[J]. Int J Mol Sci, 2022, 23(3): 1755.
doi: 10.3390/ijms23031755 URL |
[44] |
Hickman R, Hill C, Penfold CA, et al. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves[J]. Plant J, 2013, 75(1): 26-39.
doi: 10.1111/tpj.2013.75.issue-1 URL |
[45] |
Gong L, Zhang HW, Liu X, et al. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2020, 151: 535-544.
doi: 10.1016/j.plaphy.2020.04.008 URL |
[35] |
Hu HC, Ma L, Chen X, et al. Genome-wide identification of the NAC gene family in Zanthoxylum bungeanum and their transcriptional responses to drought stress[J]. Int J Mol Sci, 2022, 23(9): 4769.
doi: 10.3390/ijms23094769 URL |
[36] |
Li M, Hou L, Liu SS, et al. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses[J]. Ind Crops Prod, 2021, 173: 114093.
doi: 10.1016/j.indcrop.2021.114093 URL |
[37] |
Fu JE, Wu HA, Ma SQ, et al. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Front Plant Sci, 2017, 8: 2108.
doi: 10.3389/fpls.2017.02108 URL |
[38] |
Mohi-Ud-Din M, Talukder D, Rohman M, et al. Exogenous application of methyl jasmonate and salicylic acid mitigates drought-induced oxidative damages in French bean(Phaseolus vulgaris L.)[J]. Plants, 2021, 10(10): 2066.
doi: 10.3390/plants10102066 URL |
[39] |
Sun TT, Zhang JK, Zhang Q, et al. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants[J]. Tree Physiol, 2022, 42(9): 1827-1840.
doi: 10.1093/treephys/tpac034 URL |
[40] |
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4: 248.
doi: 10.3389/fmicb.2013.00248 pmid: 24058359 |
[1] | HU Ya-dan, WU Guo-qiang, LIU Chen, WEI Ming. Roles of MYB Transcription Factor in Regulating the Responses of Plants to Stress [J]. Biotechnology Bulletin, 2024, 40(6): 5-22. |
[2] | QIN Jian, LI Zhen-yue, HE Lang, LI Jun-ling, ZHANG Hao, DU Rong. Change of Single-cell Transcription Profile and Analysis of Intercellular Communication in Myogenic Cell Differentiation [J]. Biotechnology Bulletin, 2024, 40(6): 330-342. |
[3] | WEN Jie, DU Yuan-xin, WU An-bo, YANG Guang-rong, LU Min, AN Hua-ming, NAN Hong. Identification and Expression Pattern Analysis of Rosa roxburghii SOD Gene Family [J]. Biotechnology Bulletin, 2024, 40(5): 153-166. |
[4] | CHEN Chun-lin, LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan. Identification and Expression Analysis of Epidermal Patterning Factor (EPF) Genes in Cucumis melo [J]. Biotechnology Bulletin, 2024, 40(4): 130-138. |
[5] | CHEN Qiang, HUANG Xin-hui, ZHANG Zheng, ZHANG Chong, LIU Ye-fei. Effects of Melatonin on the Fruit Softening and Ethylene Synthesis of Post-harvest Oriental Melon [J]. Biotechnology Bulletin, 2024, 40(4): 139-147. |
[6] | ZHANG Yu, SHI Lei, GONG Lei, NIE Feng-jie, YANG Jiang-wei, LIU Xuan, YANG Wen-jing, ZHANG Guo-hui, XIE Rui-xia, ZHANG Li. Genome-wide Identification of Potato WOX Gene Family and Its Expression Analysis in in vitro Regeneration and Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 170-180. |
[7] | WU Xing-xing, HONG Hai-bo, GAN Zhi-cheng, LI Rui-ning, HUANG Xian-zhong. Cloning and Preliminary Functional Analysis of CaPI Gene in Capsicum annuum L. [J]. Biotechnology Bulletin, 2024, 40(3): 193-201. |
[8] | JIANG Lin-qi, ZHAO Jia-ying, ZHENG Fei-xiong, YAO Xin-yi, LI Xiao-xian, YU Zhen-ming. Identification and Expression Analysis of 14-3-3 Gene Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2024, 40(3): 229-241. |
[9] | WU Zhen, ZHANG Ming-Ying, YAN Feng, LI Yi-min, GAO Jing, YAN Yong-Gang, ZHANG Gang. Identification and Analysis of WRKY Gene Family in Rheum palmatum L. [J]. Biotechnology Bulletin, 2024, 40(1): 250-261. |
[10] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[11] | LIU Wen-jin, MA Rui, LIU Sheng-yan, YANG Jiang-wei, ZHANG Ning, SI Huai-jun. Cloning of StCIPK11 Gene and Analysis of Its Response to Drought Stress in Solanum tuberosum [J]. Biotechnology Bulletin, 2023, 39(9): 147-155. |
[12] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[13] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[14] | DING Kai-xin, WANG Li-chun, TIAN Guo-kui, WANG Hai-yan, LI Feng-yun, PAN Yang, PANG Ze, SHAN Ying. Research Progress in Uniconazole Alleviating Plant Drought Damage [J]. Biotechnology Bulletin, 2023, 39(6): 1-11. |
[15] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||