Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 184-195.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0729
Previous Articles Next Articles
ZHAO Yan-xia(), ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo(), LV Xiao-hui()
Received:
2022-06-17
Online:
2023-03-26
Published:
2023-04-10
ZHAO Yan-xia, ZHANG Jing-ying, SUN Jun-fei, WANG Jiang-hui, SUN Jia-bo, LV Xiao-hui. Analyses of Transcription and Metabolic Differential in the Flower Development Processes of ‘Rose rugosa cv. Plena’[J]. Biotechnology Bulletin, 2023, 39(3): 184-195.
Fig. 1 ‘Rose rugosa cv. Plena’ at different flower develo-pment stages S1, bud stage; S2, early opening stage; S3, half opening stage; S4, full opening stage; S5, falling stage
样品Sample | 干净数据Clean reads/条 | 干净碱基Clean bases/条 | Q30/% | GC% | 总覆盖率Total map | 单基因簇覆盖率Uniqene map |
---|---|---|---|---|---|---|
S1_1 | 43560704 | 6.53G | 93.11 | 46.38 | 38653888(88.74%) | 37024958(85.0%) |
S1_2 | 41108142 | 6.17G | 93.59 | 46.24 | 36527928(88.86%) | 34961281(85.05%) |
S1_3 | 41270832 | 6.19G | 92.90 | 46.57 | 36416339(88.24%) | 34853914(84.45%) |
S2_1 | 40157090 | 6.02G | 92.70 | 46.15 | 35191533(87.63%) | 33462150(83.33%) |
S2_2 | 40792264 | 6.12G | 93.43 | 46.00 | 36413732(89.27%) | 34522803(84.63%) |
S2_3 | 50193776 | 7.53G | 93.74 | 44.87 | 44201173(88.06%) | 41939032(83.55%) |
S3_1 | 42675712 | 6.4G | 92.93 | 46.36 | 37888228(88.78%) | 35915909(84.16%) |
S3_2 | 38782360 | 5.82G | 93.87 | 45.44 | 34250173(88.31%) | 32535926(83.89%) |
S3_3 | 39070016 | 5.86G | 93.88 | 46.28 | 34707961(88.84%) | 32862481(84.11%) |
S4_1 | 48560062 | 7.28G | 93.19 | 46.35 | 42964625(88.48%) | 41292162(85.03%) |
S4_2 | 43634520 | 6.55G | 93.42 | 46.53 | 38758791(88.83%) | 37288218(85.46%) |
S4_3 | 41766500 | 6.26G | 94.09 | 46.32 | 37080845(88.78%) | 35641262(85.33%) |
S5_1 | 44557882 | 6.68G | 93.32 | 46.36 | 39238867(88.06%) | 37801285(84.84%) |
S5_2 | 46285840 | 6.94G | 93.00 | 46.18 | 40765093(88.07%) | 39282444(84.87%) |
S5_3 | 43097136 | 6.46G | 93.23 | 46.15 | 38142503(88.5%) | 36731475(85.23%) |
Table 1 Statistics of transcriptome sequencing data assembly
样品Sample | 干净数据Clean reads/条 | 干净碱基Clean bases/条 | Q30/% | GC% | 总覆盖率Total map | 单基因簇覆盖率Uniqene map |
---|---|---|---|---|---|---|
S1_1 | 43560704 | 6.53G | 93.11 | 46.38 | 38653888(88.74%) | 37024958(85.0%) |
S1_2 | 41108142 | 6.17G | 93.59 | 46.24 | 36527928(88.86%) | 34961281(85.05%) |
S1_3 | 41270832 | 6.19G | 92.90 | 46.57 | 36416339(88.24%) | 34853914(84.45%) |
S2_1 | 40157090 | 6.02G | 92.70 | 46.15 | 35191533(87.63%) | 33462150(83.33%) |
S2_2 | 40792264 | 6.12G | 93.43 | 46.00 | 36413732(89.27%) | 34522803(84.63%) |
S2_3 | 50193776 | 7.53G | 93.74 | 44.87 | 44201173(88.06%) | 41939032(83.55%) |
S3_1 | 42675712 | 6.4G | 92.93 | 46.36 | 37888228(88.78%) | 35915909(84.16%) |
S3_2 | 38782360 | 5.82G | 93.87 | 45.44 | 34250173(88.31%) | 32535926(83.89%) |
S3_3 | 39070016 | 5.86G | 93.88 | 46.28 | 34707961(88.84%) | 32862481(84.11%) |
S4_1 | 48560062 | 7.28G | 93.19 | 46.35 | 42964625(88.48%) | 41292162(85.03%) |
S4_2 | 43634520 | 6.55G | 93.42 | 46.53 | 38758791(88.83%) | 37288218(85.46%) |
S4_3 | 41766500 | 6.26G | 94.09 | 46.32 | 37080845(88.78%) | 35641262(85.33%) |
S5_1 | 44557882 | 6.68G | 93.32 | 46.36 | 39238867(88.06%) | 37801285(84.84%) |
S5_2 | 46285840 | 6.94G | 93.00 | 46.18 | 40765093(88.07%) | 39282444(84.87%) |
S5_3 | 43097136 | 6.46G | 93.23 | 46.15 | 38142503(88.5%) | 36731475(85.23%) |
Fig. 10 Metabolomic and transcript profiling in the terpene biosynthetic in flower development stages Gene expression levels(Log2 FPRM)in five flower development stages in rose are represented by color gradation from green to red. Gene expression with FPRM ≤ 1 was set to 0 after log2 transformation. Grids with a color-scale from blue to red represent values of metabolite S2/S1, S3/S1, S4/S1 and S5/S1, respectively
[1] | 陈玉霞. 山东玫瑰产业发展现状及建议[J]. 中国果菜, 2020, 40(6): 116-118, 128. |
Chen YX. Present situation and suggestion of Shandong rose industry development[J]. China Fruit & Veg, 2020, 40(6): 116-118, 128. | |
[2] |
Knudsen JT, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent[J]. Bot Rev, 2006, 72(1): 1-120.
doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 URL |
[3] | 张长波, 孙红霞, 巩中军, 等. 植物萜类化合物的天然合成途径及其相关合酶[J]. 植物生理学通讯, 2007, 43(4): 779-786. |
Zhang CB, Sun HX, Gong ZJ, et al. Plant terpenoid natural metabolism pathways and their synthases[J]. Plant Physiol Commun, 2007, 43(4): 779-786. | |
[4] |
Martin GJ, Heck G, Djamaris-Zainal R, et al. Isotopic criteria in the characterization of aromatic molecules. 1. Hydrogen affiliation in natural benzenoid/phenylpropanoid molecules[J]. J Agric Food Chem, 2006, 54(26): 10112-10119.
doi: 10.1021/jf061979w URL |
[5] | 孔滢, 孙明, 潘会堂, 等. 花香代谢与调控研究进展[J]. 北京林业大学学报, 2012, 34(2): 146-154. |
Kong Y, Sun M, Pan HT, et al. Advances in metabolism and regulation of floral scent[J]. J Beijing For Univ, 2012, 34(2): 146-154. | |
[6] |
姚晨阳, 葛红, 吴华, 等. 玫瑰不同品种花瓣挥发性成分分析[J]. 园艺学报, 2019, 46(2): 375-384.
doi: 10.16420/j.issn.0513-353x.2018-0196 |
Yao CY, Ge H, Wu H, et al. Petal volatile components among different varieties of Rosa rugosa[J]. Acta Hortic Sin, 2019, 46(2): 375-384. | |
[7] |
Jadaun JS, Sangwan NS, Narnoliya LK, et al. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis[J]. Physiol Plant, 2017, 159(4): 381-400.
doi: 10.1111/ppl.12507 pmid: 27580641 |
[8] |
Kaminaga Y, Schnepp J, Peel G, et al. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation[J]. J Biol Chem, 2006, 281(33): 23357-23366.
doi: 10.1074/jbc.M602708200 pmid: 16766535 |
[9] |
Magnard JL, Roccia A, Caissard JC, et al. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses[J]. Science, 2015, 349(6243): 81-83.
doi: 10.1126/science.aab0696 URL |
[10] |
Feng LG, Chen C, Li TL, et al. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose(Rosa rugosa Thunb.)[J]. Plant Physiol Biochem, 2014, 75: 80-88.
doi: 10.1016/j.plaphy.2013.12.006 URL |
[11] |
Tholl D, Gershenzon J. Biochemistry. The flowering of a new scent pathway in rose[J]. Science, 2015, 349(6243): 28-29.
doi: 10.1126/science.aac6509 URL |
[12] | Liu KD, Feng SX, Pan YL, et al. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple(Annona squamosa L.)[J]. Front Plant Sci, 2016, 7: 1695. |
[13] |
Chen F, Su LY, Hu SY, et al. A chromosome-level genome assembly of rugged rose(Rosa rugosa)provides insights into its evolution, ecology, and floral characteristics[J]. Hortic Res, 2021, 8(1): 141.
doi: 10.1038/s41438-021-00594-z |
[14] |
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64: 665-700.
doi: 10.1146/annurev-arplant-050312-120116 pmid: 23451776 |
[15] |
Baldwin IT. Plant volatiles[J]. Curr Biol, 2010, 20(9): R392-R397.
doi: 10.1016/j.cub.2010.02.052 URL |
[16] |
Bouwmeester H, Schuurink RC, Bleeker PM, et al. The role of volatiles in plant communication[J]. Plant J, 2019, 100(5): 892-907.
doi: 10.1111/tpj.14496 |
[17] |
Alquézar B, Rodríguez A, et al. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis[J]. Front Plant Sci, 2017, 8: 1481.
doi: 10.3389/fpls.2017.01481 pmid: 28883829 |
[18] |
Hirata H, Ohnishi T, Watanabe N. Biosynthesis of floral scent 2-phenylethanol in rose flowers[J]. Biosci Biotechnol Biochem, 2016, 80(10): 1865-1873.
doi: 10.1080/09168451.2016.1191333 URL |
[19] | Chen XM, Kobayashi H, Sakai MW, et al. Functional characterization of rose phenylacetaldehyde reductase(PAR), an enzyme involved in the biosynthesis of the scent compound 2-phenylethanol[J]. J Plant Physiol, 2011, 168(2): 88-95. |
[20] |
Koeduka T, Fridman E, Gang DR, et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester[J]. Proc Natl Acad Sci USA, 2006, 103(26): 10128-10133.
doi: 10.1073/pnas.0603732103 pmid: 16782809 |
[21] | 王海萍, 晏慧君, 张颢, 等. 月季(Rosa chinensis)丁香酚合成酶基因RcEGS1的克隆及其表达分析[J]. 园艺学报, 2012, 39(7): 1387-1394. |
Wang HP, Yan HJ, Zhang H, et al. Cloning and expression analysis of eugenol synthase gene RcEGS1 in Rosa chinensis ‘pallida’[J]. Acta Hortic Sin, 2012, 39(7): 1387-1394. |
[1] | ZHOU Ai-ting, PENG Rui-qi, WANG Fang, WU Jian-rong, MA Huan-cheng. Analysis of Metabolic Differences of Biocontrol Strain DZY6715 at Different Growth Stages [J]. Biotechnology Bulletin, 2023, 39(9): 225-235. |
[2] | CAO Ying-hui, HU Mei-juan, TONG Yan, ZHANG Yan-ping, ZHAO Kai, PENG Dong-hui, ZHOU Yu-zhen. Identification of the ABC Gene Family and Expression Pattern Analysis During Flower Development in Cymbidium ensifolium [J]. Biotechnology Bulletin, 2022, 38(11): 162-174. |
[3] | LIU Chuan-he, HE Han, HE Xiu-gu, LAI Qiu-qin, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Unveiling the Mechanisms of Pineapple Responding to Anti-chilling by Gauze Covering in Winter via Transcriptome and Metabolome Profiling [J]. Biotechnology Bulletin, 2022, 38(11): 58-69. |
[4] | LIU Chuan-he, HE Han, HE Xiu-gu, LIU Kai, SHAO Xue-hua, LAI Duo, KUANG Shi-zi, XIAO Wei-qiang. Analysis of Differential Metabolites and Bacterial Community Structure in Soils of a Pineapple Orchard in Different Continuous-cropping Years [J]. Biotechnology Bulletin, 2021, 37(8): 162-175. |
[5] | CAO Ji-min, LI Shuang-cai, HE De. Transcriptome Analysis of Saliz matsudana Under Cadmium Stress [J]. Biotechnology Bulletin, 2020, 36(7): 32-39. |
[6] | Jiang Wei, Gu Huiying, Wang Zhimin, Song Ming, Tang Qinglin. The Flower Development of Arabidopsis thaliana Affected by Floral Meristem Identity Gene AGL24 [J]. Biotechnology Bulletin, 2014, 0(4): 6-13. |
[7] | Li Jing, Gu Huiying, Wang Zhimin, Tang Qinglin, Song Ming. Research Progress of Flowering Gene Regulatory Networks in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2014, 0(12): 1-8. |
[8] | Qiao Wenjie, Lei Rong, Jiang Hongshan, Hu Fan, Li Zhihong, Zhu Shuifang. Analysis of Total RNA in CMV Infected Tobacco by Ion Pair Reverse Phase High Performance Liquid Chromatography [J]. Biotechnology Bulletin, 2013, 0(4): 90-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||