Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 168-176.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1230
Previous Articles Next Articles
WANG Yi-fan(), HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang()
Received:
2022-10-08
Online:
2023-05-26
Published:
2023-06-08
Contact:
WU Yu-xiang
E-mail:991475535@qq.com;yuxiangwu2009@hotmail.com
WANG Yi-fan, HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang. Synthesis and Character Identification of Allohexaploid Between Gossypium hirsutum and G. gossypioides[J]. Biotechnology Bulletin, 2023, 39(5): 168-176.
类名Species | 倍性Ploidy | 染色体组Genome | 染色体数Chromosome number | 地理分布Geographical distribution |
---|---|---|---|---|
陆地棉 G. hirsutum | 4X | (AD)1 | 2n=4X=52 | 世界广泛栽培 Worldwide cultivation |
拟似棉 G. gossypioides | 2X | D6 | 2n=2X=26 | 墨西哥瓦哈卡洲 Oaxaca, Mexico |
Table 1 Basic information of research materials
类名Species | 倍性Ploidy | 染色体组Genome | 染色体数Chromosome number | 地理分布Geographical distribution |
---|---|---|---|---|
陆地棉 G. hirsutum | 4X | (AD)1 | 2n=4X=52 | 世界广泛栽培 Worldwide cultivation |
拟似棉 G. gossypioides | 2X | D6 | 2n=2X=26 | 墨西哥瓦哈卡洲 Oaxaca, Mexico |
材料 Material | 平均荧光强度 Mean fluorescence intensity | 倍性 Ploidy |
---|---|---|
P1 | 229.85 | 4X |
F1 | 136.44 | 3X |
P2 | 80.91 | 2X |
M0-1 | 258.47 | 6X |
M0-2 | 264.87 | 6X |
M0-3 | 176.52 | 3X-6X |
M0-4 | 284.34 | 6X |
Table 2 Flow cytometry results for ploidy level
材料 Material | 平均荧光强度 Mean fluorescence intensity | 倍性 Ploidy |
---|---|---|
P1 | 229.85 | 4X |
F1 | 136.44 | 3X |
P2 | 80.91 | 2X |
M0-1 | 258.47 | 6X |
M0-2 | 264.87 | 6X |
M0-3 | 176.52 | 3X-6X |
M0-4 | 284.34 | 6X |
Fig. 1 Plant morphology comparison among different generations(Ruler: 10 cm) P1: G. hirsutum. P2: G. gossypioides. F1: Hybrid. M0: Allohexaploid. The same below
材料Material | 叶面积Leaf area/mm2 | 叶形指数Leaf index | 叶裂数leaf lobes | 表面是否有茸毛Surface fuzz | 相对叶绿素含量SPAD |
---|---|---|---|---|---|
P1 | 3 959.15±261.99 aA | 0.69±0.08 cB | 4-6 | 有 | 34.25±0.91 bBC |
P2 | 3 819.18±270.21 aA | 1.47±0.19 aA | 3-5 | 无 | 30.91±1.89 cC |
F1 | 1 666.25±113.43 cB | 0.93±0.11 bB | 4-6 | 无 | 35.03±1.08 bB |
M0 | 2 124.53±23.94 bB | 0.69±0.06 cB | 3-6 | 有 | 40.97±1.00 aA |
Table 3 Leaf phenotypic statistics
材料Material | 叶面积Leaf area/mm2 | 叶形指数Leaf index | 叶裂数leaf lobes | 表面是否有茸毛Surface fuzz | 相对叶绿素含量SPAD |
---|---|---|---|---|---|
P1 | 3 959.15±261.99 aA | 0.69±0.08 cB | 4-6 | 有 | 34.25±0.91 bBC |
P2 | 3 819.18±270.21 aA | 1.47±0.19 aA | 3-5 | 无 | 30.91±1.89 cC |
F1 | 1 666.25±113.43 cB | 0.93±0.11 bB | 4-6 | 无 | 35.03±1.08 bB |
M0 | 2 124.53±23.94 bB | 0.69±0.06 cB | 3-6 | 有 | 40.97±1.00 aA |
材料 Material | 气孔密度 Stomatal density | 保卫细胞长度 Guard cell length/cm | 叶绿体数 Number of chloroplasts |
---|---|---|---|
P1 | 35.23±2.86 aA | 2.38±0.24 dC | 13.62±1.96 cC |
P2 | 29.55±1.86 cB | 2.50±0.20 cC | 14.06±1.36 cC |
F1 | 33.08±2.84 bA | 2.71±0.21 bB | 16.00±1.59 bB |
M0 | 14.31±1.65 dC | 4.18±1.65 dC | 24.30±3.87 aA |
Table 4 Leaf anatomy identification statistics
材料 Material | 气孔密度 Stomatal density | 保卫细胞长度 Guard cell length/cm | 叶绿体数 Number of chloroplasts |
---|---|---|---|
P1 | 35.23±2.86 aA | 2.38±0.24 dC | 13.62±1.96 cC |
P2 | 29.55±1.86 cB | 2.50±0.20 cC | 14.06±1.36 cC |
F1 | 33.08±2.84 bA | 2.71±0.21 bB | 16.00±1.59 bB |
M0 | 14.31±1.65 dC | 4.18±1.65 dC | 24.30±3.87 aA |
材料 Material | 倍性 Ploidy | 花粉粒直径 Pollen grain diameter/cm | 正常花粉粒 Normal pollen grain | 异常花粉粒 Abnormal pollen grain | 正常花粉粒百分比 Percentage of normal pollen grains/% |
---|---|---|---|---|---|
F1 | 3 | 3.80±0.35 bB | 409 | 391 | 51.13 |
M0 | 6 | 4.91±0.30 aA | 585 | 214 | 73.25 |
Table 5 Pollen grain diameter and normal proportion among F1 and M0
材料 Material | 倍性 Ploidy | 花粉粒直径 Pollen grain diameter/cm | 正常花粉粒 Normal pollen grain | 异常花粉粒 Abnormal pollen grain | 正常花粉粒百分比 Percentage of normal pollen grains/% |
---|---|---|---|---|---|
F1 | 3 | 3.80±0.35 bB | 409 | 391 | 51.13 |
M0 | 6 | 4.91±0.30 aA | 585 | 214 | 73.25 |
材料 Material | 初始荧光 Fo | 最大荧光量 Fm | 可变荧光 Fv | 原初光能转化效率 Fv/Fm | PS II潜在光化学效率 Fv/Fo | PS II捕获的激发能的效率 Fm/Fo |
---|---|---|---|---|---|---|
P1 | 0.18±0.01 aA | 0.59±0.04 bB | 0.41±0.04 cB | 0.70±0.083 cB | 2.30±0.28 cB | 3.30±0.28 cB |
P2 | 0.17±0.01 aA | 0.62±0.03 bB | 0.45±0.02 bcB | 0.73±0.00 bB | 2.77±0.03 bcB | 3.77±0.03 bcB |
F1 | 0.16±0.02 aA | 0.65±0.02 bAB | 0.49±0.01 bB | 0.76±0.02 bB | 3.12±0.40 bB | 4.12±0.40 bB |
M0 | 0.12±0.00 bB | 0.73±0.02 aA | 0.61±0.02 aA | 0.83±0.00 aA | 5.04±0.11 aA | 6.04±0.11 aA |
Table 6 Leaf fluorescence parameter index comparison among different generations
材料 Material | 初始荧光 Fo | 最大荧光量 Fm | 可变荧光 Fv | 原初光能转化效率 Fv/Fm | PS II潜在光化学效率 Fv/Fo | PS II捕获的激发能的效率 Fm/Fo |
---|---|---|---|---|---|---|
P1 | 0.18±0.01 aA | 0.59±0.04 bB | 0.41±0.04 cB | 0.70±0.083 cB | 2.30±0.28 cB | 3.30±0.28 cB |
P2 | 0.17±0.01 aA | 0.62±0.03 bB | 0.45±0.02 bcB | 0.73±0.00 bB | 2.77±0.03 bcB | 3.77±0.03 bcB |
F1 | 0.16±0.02 aA | 0.65±0.02 bAB | 0.49±0.01 bB | 0.76±0.02 bB | 3.12±0.40 bB | 4.12±0.40 bB |
M0 | 0.12±0.00 bB | 0.73±0.02 aA | 0.61±0.02 aA | 0.83±0.00 aA | 5.04±0.11 aA | 6.04±0.11 aA |
[1] |
Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding[J]. Planta, 2016, 243(2): 281-296.
doi: 10.1007/s00425-015-2450-x pmid: 26715561 |
[2] | 李妙. 远杂棉花新品种冀资123的选育及应用[J]. 中国棉花, 1997, 24(3): 26-27. |
Li M. Breeding and application of a new far-hybrid cotton variety Jizi 123[J]. China Cotton, 1997, 24(3): 26-27. | |
[3] | 梁理民, 王增信, 刘有良, 等. 棉花种间杂交新品系及新种质的育成[J]. 西北农林科技大学学报: 自然科学版, 2003, 31(5): 9-12. |
Liang LM, Wang ZX, Liu YL, et al. Selection for new interspecific hybridization strains and germplasms of cotton[J]. J Northwest Sci Tech Univ Agric For, 2003, 31(5): 9-12. | |
[4] |
Liu Q, Chen Y, Chen Y, et al. A new synthetic allotetraploid(A1A1G2G2)between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton[J]. PLoS One, 2015, 10(4): e0123209.
doi: 10.1371/journal.pone.0123209 URL |
[5] |
申状状, 李昱樱, 荣二花, 等. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
doi: 10.3724/SP.J.1006.2019.84086 |
Shen ZZ, Li YY, Rong EH, et al. Allohexaploid synthesis and its characteristic identification between cotton species Gossypium hirsutum and G. sturtianum[J]. Acta Agron Sin, 2019, 45(4): 628-634.
doi: 10.3724/SP.J.1006.2019.84086 URL |
|
[6] |
Mace ME, Bell AA. Flavanol and terpenoid aldehyde synthesis in tumors associated with genetic incompatibility in a Gossypium hirsutum × G. gossypioides hybrid[J]. Can J Bot, 1981, 59(6): 951-955.
doi: 10.1139/b81-130 URL |
[7] | 谭晓连, 钱迎倩. 不同外植体来源和培养条件对拟似棉植株再生的影响[J]. 遗传学报, 1988, 15(2): 81-85. |
Tan XL, Qian YQ. Effect of eyplant sources and cultural conditions on plant regeneration in Gossypium gossypioides(ulbrich)stand ley[J]. Acta Genet Sin, 1988, 15(2): 81-85. | |
[8] | 王坤波, 李懋学. 棉属D染色体组的核型变异和进化[J]. 作物学报, 1990, 16(3): 200-207, 289. |
Wang KB, Li MX. The karyotype variation and evolution of D genome in Gossypium[J]. Acta Agron Sin, 1990, 16(3): 200-207, 289. | |
[9] | 郭旺珍, 王凯, 张天真. 利用SSR标记技术研究棉属A、D染色体组的进化[J]. 遗传学报, 2003, 30(2): 183-188. |
Guo WZ, Wang K, Zhang TZ. A and D genome evolution in Gossypium revealed using SSR molecular markers[J]. Acta Genet Sin, 2003, 30(2): 183-188. | |
[10] | Wang ZL, Jiang RQ, He JX, et al. Studies on the sterility of F1 from Gossypium barbadense × G. Gossypioides[J]. J Genet Genom, 1997(4): 368-372. |
[11] |
Phillips LL, Merritt JF. Interspecific incompatibility in Gossypium. I. Stem histogenesis of G. hirsutum × G. gossypioides[J]. Am J Bot, 1972, 59(2): 203-208.
doi: 10.1002/ajb2.1972.59.issue-2 URL |
[12] | 宋丽. 棉花光子和杂种致死性状的遗传分析及基因定位[D]. 南京: 南京农业大学, 2008. |
Song L. Genetic analysis and gene mapping of the fuzzless and hybrid lethality traits in cotton[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[13] |
Tan W, Liu J, Dai T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1): 21-27.
doi: 10.1007/s11099-008-0005-0 URL |
[14] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
Gao JF. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006. | |
[15] |
Ostevik KL, Andrew RL, Otto SP, et al. Multiple reproductive barriers separate recently diverged sunflower ecotypes[J]. Evolution, 2016, 70(10): 2322-2335.
doi: 10.1111/evo.13027 pmid: 27479368 |
[16] |
Chen Y, Wang YY, Zhao T, et al. A new synthetic amphiploid(AADDAA)between Gossypium hirsutum and G. arboreum lays the foundation for transferring resistances to Verticillium and drought[J]. PLoS One, 2015, 10(6): e0128981.
doi: 10.1371/journal.pone.0128981 URL |
[17] | van Tuyl JM, Arens P, Shahin A, et al. Lilium[M]//Handbook of Plant Breeding. Cham: Springer International Publishing, 2018: 481-512. |
[18] | 崔淑芳, 钱玉源, 王广恩, 等. 远缘杂交种冀棉25的选育及其育种利用[J]. 中国棉花, 2018, 45(3): 21-25. |
Cui SF, Qian YY, Wang GG, et al. Breeding and application of intergeneric hybridization cotton variety jimian 25[J]. China Cotton, 2018, 45(3): 21-25. | |
[19] | 薛玉前, 庄木, 方智远, 等. 植物杂种致死研究进展[J]. 中国农业科技导报, 2015, 17(2): 1-7. |
Xue YQ, Zhuang M, Fang ZY, et al. Research progress in plant hybrid lethality[J]. J Agric Sci Technol, 2015, 17(2): 1-7. | |
[20] |
王一帆, 郑赟, 荣二花, 等. 亚洲棉与拟似棉远缘杂种的合成与鉴定[J]. 生物技术通报, 2020, 36(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1249 |
Wang YF, Zheng Y, Rong EH, et al. Synthesis and identification of distant hybrids between Gossypium arboreum and Gossypium gossypioides[J]. Biotechnol Bull, 2020, 36(8): 1-7. | |
[21] |
Chen D, Wu YX, Zhang XL, et al. Analysis of[Gossypium capitis-viridis ×(G. hirsutum × G. australe)2]trispecific hybrid and selected characteristics[J]. PLoS One, 2015, 10(6): e0127023.
doi: 10.1371/journal.pone.0127023 URL |
[22] |
Wu YX, Chen D, Zhu SJ, et al. A new sythetic hybrid(A1D5)between Gossypium herbaceum and G. raimondii and its morphological, cytogenetic, molecular characterization[J]. PLoS One, 2017, 12(2): e0169833.
doi: 10.1371/journal.pone.0169833 URL |
[23] |
Konan NO, Mergeai G. Relationship between meiotic behaviour and fertility in backcross-1 derivatives of the[(Gossypium hirsutum × G. thurberi)2 × G. longicalyx]trispecies hybrid[J]. Comparative Cytogenetics, 2020, 14(1): 75-95.
doi: 10.3897/CompCytogen.v14i1.47231 URL |
[24] | 王坤波, 刘旭. 棉属多倍化研究进展[J]. 中国农业科技导报, 2013, 15(2): 20-27. |
Wang KB, Liu X. Study progress of Gossypium polyploidization[J]. J Agric Sci Technol, 2013, 15(2): 20-27. | |
[25] | 谢倩雯. [A1A1G2G2]异源四倍体棉花种质的创制及其色素腺体与棉酚性状的研究[D]. 杭州: 浙江大学, 2020. |
Xie QW. Study on a new synthetic[A1A1G2G2]allotetraploid and its pigment glands and gossypol properities[D]. Hangzhou: Zhejiang University, 2020. | |
[26] |
Dong SW, Adams KL. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids[J]. New Phytol, 2011, 190(4): 1045-1057.
doi: 10.1111/j.1469-8137.2011.03650.x pmid: 21361962 |
[27] |
Seelanan T, Brubaker C, Stewart J, et al. Molecular systematics of Australian Gossypium section Grandicalyx(Malvaceae)[J]. Syst Bot, 1999, 24: 183-208.
doi: 10.2307/2419548 URL |
[28] |
Wendel JF. An unusual ribosomal DNA sequence from Gossypium Gossypioides reveals ancient, cryptic, intergenomic introgression[J]. Mol Phylogenetics Evol, 1995, 4(3): 298-313.
doi: 10.1006/mpev.1995.1027 URL |
[29] |
朱广龙, 宋成钰, 于林林, 等. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
doi: 10.3724/SP.J.1006.2018.01713 |
Zhu GL, Song CY, Yu LL, et al. Alleviation effects of exogenous growth regulators on seed germination of sweet Sorghum under salt stress and its physiological basis[J]. Acta Agron Sin, 2018, 44(11): 1713-1724.
doi: 10.3724/SP.J.1006.2018.01713 URL |
|
[30] |
葛霞, 徐瑞, 李梅, 等. 香芹酮对马铃薯种薯发芽的调控机制[J]. 中国农业科学, 2020, 53(23): 4929-4939.
doi: 10.3864/j.issn.0578-1752.2020.23.017 |
Ge X, Xu R, Li M, et al. Regulation mechanism of carvone on seed potato sprouting[J]. Sci Agric Sin, 2020, 53(23): 4929-4939.
doi: 10.3864/j.issn.0578-1752.2020.23.017 |
|
[31] | 吴雪霞, 杨晓春, 朱宗文, 等. 外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数及光能分配的影响[J]. 植物生理学报, 2013, 49(11): 1181-1188. |
Wu XX, Yang XC, Zhu ZW, et al. Effects of exogenous 6-BA on photosynthesis, chlorophyll fluorescence characteristics and the allocation of absorbed light in eggplant seedlings under low temperature stress[J]. Plant Physiol J, 2013, 49(11): 1181-1188. | |
[32] | 梁红柱, 窦德泉, 冯玉龙. 热带雨林下砂仁叶片光合作用和叶绿素荧光参数在雾凉季和雨季的日变化[J]. 生态学报, 2004, 24(7): 1421-1429. |
Liang HZ, Dou DQ, Feng YL. Diurnal changes in photosynthesis and chlorophyll fluorescence parameters of Amomum villosum lour. grown under tropical rainforest in rainy, and foggy and cool seasons at Xishuangbanna[J]. Acta Ecol Sin, 2004, 24(7): 1421-1429. |
[1] | YANG Ya-jie, LI Yu-ying, SHEN Zhuang-zhuang, CHEN Tian, RONG Er-hua, WU Yu-xiang. Selection and Character Identification for Autopolyploid Progenies of Gossypium herbaceum [J]. Biotechnology Bulletin, 2022, 38(5): 64-73. |
[2] | MA Qi, LI Ji-lian, XU Shou-zhen, CHEN Hong, LIU Wen-hao, NING Xinzhu, LIN Hai. Genetic Analysis of FBA Trait in Upland Cotton with Major Gene Plus Polygenes Mixed Genetic Model [J]. Biotechnology Bulletin, 2022, 38(10): 148-158. |
[3] | ZHAO Zhu-yue, SHEN Zhuang-zhuang, WANG Yi-fan, YANG Ya-jie, RONG Er-hua, WU Yu-xiang. Character Identification and Genetic Analysis of Distant Hybrid Between Gossypium hirsutum and Gossypium sturtianum [J]. Biotechnology Bulletin, 2021, 37(5): 19-27. |
[4] | WANG Yi-fan, ZHENG Yun, RONG Er-hua, WU Yu-xiang. Synthesis and Identification of Distant Hybrids Between Gossypium arboreum and Gossypium gossypioides [J]. Biotechnology Bulletin, 2020, 36(8): 1-7. |
[5] | LIU Xiao-wei, YANG Xiu-yan, WU Hai-wen, ZHI Xiao-rong, ZHU Jian-feng, ZHANG Hua-xin. Effects of NaCl Stress on the Germination of Reaumuria soongorica and Evaluation of Salt Tolerance at Germination Stage [J]. Biotechnology Bulletin, 2019, 35(1): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||