Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (5): 64-73.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1288
Previous Articles Next Articles
YANG Ya-jie(), LI Yu-ying, SHEN Zhuang-zhuang, CHEN Tian, RONG Er-hua, WU Yu-xiang()
Received:
2021-10-10
Online:
2022-05-26
Published:
2022-06-10
Contact:
WU Yu-xiang
E-mail:2876506015@qq.com;yuxiangwu2009@hotmail.com
YANG Ya-jie, LI Yu-ying, SHEN Zhuang-zhuang, CHEN Tian, RONG Er-hua, WU Yu-xiang. Selection and Character Identification for Autopolyploid Progenies of Gossypium herbaceum[J]. Biotechnology Bulletin, 2022, 38(5): 64-73.
正向引物 Forward primer | 引物序列 Primer sequence(5'-3') | 反向引物 Reverse primer | 引物序列 Primer sequence(5'-3') |
---|---|---|---|
Me 1 | TGAGTCCAAACCGGATA | Em 1 | GACTGCGTACGAATTAAT |
Me 2 | TGAGTCCAAACCGGAGC | Em 2 | GACTGCGTACGAATTTGC |
Me 3 | TGAGTCCAAACCGGAAT | Em 3 | GACTGCGTACGAATTGAC |
Me 4 | TGAGTCCAAACCGGTGC | Em 4 | GACTGCGTACGAATTAAC |
Me 5 | TGAGTCCAAACCGGAAG | Em 5 | GACTGCGTACGAATTGCA |
Table1 SRAP amplification primers
正向引物 Forward primer | 引物序列 Primer sequence(5'-3') | 反向引物 Reverse primer | 引物序列 Primer sequence(5'-3') |
---|---|---|---|
Me 1 | TGAGTCCAAACCGGATA | Em 1 | GACTGCGTACGAATTAAT |
Me 2 | TGAGTCCAAACCGGAGC | Em 2 | GACTGCGTACGAATTTGC |
Me 3 | TGAGTCCAAACCGGAAT | Em 3 | GACTGCGTACGAATTGAC |
Me 4 | TGAGTCCAAACCGGTGC | Em 4 | GACTGCGTACGAATTAAC |
Me 5 | TGAGTCCAAACCGGAAG | Em 5 | GACTGCGTACGAATTGCA |
材料Material | 平均荧光强度X-mean | 倍性Ploidy |
---|---|---|
1 | 189.25 | 2X |
2 | 401.62 | 4X |
3 | 381.03 | 4X |
4 | 347.04 | 4X |
5 | 313.78 | 3X |
6 | 271.03 | 3X |
7 | 314.07 | 3X |
8 | 302.32 | 3X |
9 | 307.86 | 3X |
Table 2 Fluorescence peaks of different ploidy materials
材料Material | 平均荧光强度X-mean | 倍性Ploidy |
---|---|---|
1 | 189.25 | 2X |
2 | 401.62 | 4X |
3 | 381.03 | 4X |
4 | 347.04 | 4X |
5 | 313.78 | 3X |
6 | 271.03 | 3X |
7 | 314.07 | 3X |
8 | 302.32 | 3X |
9 | 307.86 | 3X |
倍性 Ploidy | 气孔密度 Stomatal density | 气孔长度 Stomatal length/cm | 叶绿体数 Chloroplast number |
---|---|---|---|
2X | 44.20±1.75a | 2.64±0.13c | 11.80±1.32c |
3X | 31.80±1.32b | 2.93±0.11b | 18.90±1.20b |
4X | 23.80±1.32c | 3.44±0.12a | 24.20±1.32a |
Table 3 Stomatal character statistics of leaves among diffe-rent ploidy G. herbaceum
倍性 Ploidy | 气孔密度 Stomatal density | 气孔长度 Stomatal length/cm | 叶绿体数 Chloroplast number |
---|---|---|---|
2X | 44.20±1.75a | 2.64±0.13c | 11.80±1.32c |
3X | 31.80±1.32b | 2.93±0.11b | 18.90±1.20b |
4X | 23.80±1.32c | 3.44±0.12a | 24.20±1.32a |
Fig. 7 Normal and abnormal meiosis behavior of different ploidy G. herbaceum(Ruler:20 μm) A-E are 2X. A:Monad. B:Dyad. C:Triad. D:Normal tetrad. E:Polyad. F-J are 3X. F:Monad. G:Dyad. H:Triad. I:Normal tetrad. J:Polyad. K-O are 4X. K:Monad. L:Triad. M:Normal tetrad. N:Abnormal tetrad. O:Polyad
倍性 Ploidy | 单分体 Monad | 二分体 Dyad | 三分体 Triad | 正常四分体 Normal tetrad | 异常四分体 Abnormal tetrad | 多分体 Polyad | 总数 Total |
---|---|---|---|---|---|---|---|
2X | 1(0.17%) | 2(0.33%) | 25(4.17%) | 569(94.83%) | 1(0.17%) | 2(0.33%) | 600 |
3X | 15(2.50%) | 4(0.67%) | 60(10.00%) | 324(54.00%) | 2(0.33%) | 195(32.50%) | 600 |
4X | 13(2.17%) | 0(-) | 14(2.33%) | 442(73.67%) | 5(0.83%) | 126(21.00%) | 600 |
Table 4 Number of multispores in telophase II of different ploidy G. herbaceum
倍性 Ploidy | 单分体 Monad | 二分体 Dyad | 三分体 Triad | 正常四分体 Normal tetrad | 异常四分体 Abnormal tetrad | 多分体 Polyad | 总数 Total |
---|---|---|---|---|---|---|---|
2X | 1(0.17%) | 2(0.33%) | 25(4.17%) | 569(94.83%) | 1(0.17%) | 2(0.33%) | 600 |
3X | 15(2.50%) | 4(0.67%) | 60(10.00%) | 324(54.00%) | 2(0.33%) | 195(32.50%) | 600 |
4X | 13(2.17%) | 0(-) | 14(2.33%) | 442(73.67%) | 5(0.83%) | 126(21.00%) | 600 |
Fig. 8 Normal and abnormal pollen grains of different ploidy G. herbaceum(Ruler:20 μm) A-E are 2X. A:Normal pollen grains. B:Cracked pollen grains. C:Deformed pollen grains. D:One normal and one small dysplastic pollen grains. E:Two unequal division pollen grains. F-J are 3X. F:Normal pollen grains. G:Deformed pollen grains. H:Large oval pollen grains. I:Irregular pollen grains. J:One normal and one small under-developed pollen grains. K-O are 4X. K:Normal pollen grains. L:Deformed pollen grains. M:Cracked pollen grains. N:Two dysplastic pollen grains. O:One normal and one small under-developed pollen grain
倍性 Ploidy | 花粉粒直径 Pollen grains diameter/cm | 正常花粉粒 Normal pollen grains | 异常花粉粒 Abnormal pollen grains | 正常花粉粒所占比例 Proportion of normal pollen grains /% |
---|---|---|---|---|
2X | 3.64±0.14c | 572 | 28 | 95.33 |
3X | 4.22±0.17b | 353 | 247 | 58.83 |
4X | 4.41±0.14a | 466 | 134 | 77.67 |
Table 5 Pollen grains statistics among different ploidy G. herbaceum
倍性 Ploidy | 花粉粒直径 Pollen grains diameter/cm | 正常花粉粒 Normal pollen grains | 异常花粉粒 Abnormal pollen grains | 正常花粉粒所占比例 Proportion of normal pollen grains /% |
---|---|---|---|---|
2X | 3.64±0.14c | 572 | 28 | 95.33 |
3X | 4.22±0.17b | 353 | 247 | 58.83 |
4X | 4.41±0.14a | 466 | 134 | 77.67 |
材料 Material | 3X | 4X | |||||||
---|---|---|---|---|---|---|---|---|---|
总计 Total | 相同 Same | 缺失 Missing | 新增 New | 总计 Total | 相同 Same | 缺失 Missing | 新增 New | ||
SRAP条带 SRAP bands | 297 | 240 | 20 | 37 | 299 | 229 | 31 | 39 | |
遗传比例 Genetic ratio/% | - | 80.81 | 6.73 | 12.46 | - | 76.59 | 10.37 | 13.04 |
Table 6 Resources of SRAP polymorphism among different ploidy G. herbaceum
材料 Material | 3X | 4X | |||||||
---|---|---|---|---|---|---|---|---|---|
总计 Total | 相同 Same | 缺失 Missing | 新增 New | 总计 Total | 相同 Same | 缺失 Missing | 新增 New | ||
SRAP条带 SRAP bands | 297 | 240 | 20 | 37 | 299 | 229 | 31 | 39 | |
遗传比例 Genetic ratio/% | - | 80.81 | 6.73 | 12.46 | - | 76.59 | 10.37 | 13.04 |
[1] |
Jena SN, Srivastava A, Rai KM, et al. Development and characterization of genomic and expressed SSRs for levant cotton(Gossypium herbaceum L.)[J]. Theor Appl Genet, 2012, 124(3):565-576.
doi: 10.1007/s00122-011-1729-y URL |
[2] |
Wendel JF. New world tetraploid cottons contain old world cytoplasm[J]. Proc Natl Acad Sci USA, 1989, 86(11):4132-4136.
doi: 10.1073/pnas.86.11.4132 URL |
[3] |
Palmer SA, Clapham AJ, Rose P, et al. Archaeogenomic evidence of punctuated genome evolution in Gossypium[J]. Mol Biol Evol, 2012, 29(8):2031-2038.
doi: 10.1093/molbev/mss070 pmid: 22334578 |
[4] | Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton[M]// Advances in Agronomy.Amsterdam:Elsevier, 2003:139-186. |
[5] |
Huang G, Wu ZG, Percy RG, et al. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution[J]. Nat Genet, 2020, 52(5):516-524.
doi: 10.1038/s41588-020-0607-4 pmid: 32284579 |
[6] |
Siragusa E, Haiminen N, Finkers R, et al. Haplotype assembly of autotetraploid potato using integer linear programing[J]. Bioinformatics, 2019, 35(18):3279-3286.
doi: 10.1093/bioinformatics/btz060 pmid: 30689725 |
[7] | Tomaszewska P. Understanding polyploid banana origins. A commentary on:‘Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas’[J]. Ann Bot, 2021, 127(1):iv-v. |
[8] | 秦瑞珍, 程治军, 郭秀平. 利用同源四倍体花培途径创建水稻突变体群的研究[J]. 作物学报, 2005, 31(3):392-394, 401. |
Qin RZ, Cheng ZJ, Guo XP. The establishment of mutant pool using anther culture of autotetrapolyploid rice[J]. Acta Agron Sin, 2005, 31(3):392-394, 401. | |
[9] | 刘小俊, 李跃建, 刘独臣, 等. 四倍体南瓜的诱变和特性研究[J]. 植物生理学报, 2011, 47(3):281-285. |
Liu XJ, Li YJ, Liu DC, et al. Study of induction and characteristics of tetraploid pumpkin(Cucurbita moschata D.)[J]. Plant Physiol J, 2011, 47(3):281-285. | |
[10] |
Wan ZJ, Tan YB, Shi MH, et al. Interspecific introgression of male sterility from tetraploid oilseed Brassica napus to diploid vegetable B. Rapa through hybridisation and backcrossing[J]. Crop Pasture Sci, 2013, 64(7):652.
doi: 10.1071/CP13103 URL |
[11] |
Phat P, Sheikh S, Lim JH, et al. Enhancement of seed germination and uniformity in triploid watermelon(Citrullus lanatus(thunb.)matsum. and nakai)[J]. Korean J Hortic Sci Technol, 2015, 33(6):932-940.
doi: 10.7235/hort.2015.14193 URL |
[12] | 孙兴民. 葡萄三倍体新株系的获得[D]. 南京: 南京农业大学, 2011. |
Sun XM. Study on development of novel triploid grapevine germplasm[D]. Nanjing: Nanjing Agricultural University, 2011. | |
[13] | 解凯东, 彭珺, 袁东亚, 等. 以本地早橘和槾橘为母本倍性杂交创制柑橘三倍体[J]. 中国农业科学, 2020, 53(23):4961-4968. |
Xie KD, Peng J, Yuan DY, et al. Production of Citrus triploids based on interploidy crossing with bendizao and man tangerines as female parents[J]. Sci Agric Sin, 2020, 53(23):4961-4968. | |
[14] |
Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids[J]. Proc Natl Acad Sci USA, 2000, 97(13):7051-7057.
doi: 10.1073/pnas.97.13.7051 URL |
[15] |
Bhattarai K, Kareem A, Deng ZN. In vivo induction and characterization of polyploids in Gerbera daisy[J]. Sci Hortic, 2021, 282:110054.
doi: 10.1016/j.scienta.2021.110054 URL |
[16] | 尚小红, 单忠英, 严华兵, 等. 木薯‘新选048’二倍体及其同源四倍体对干旱胁迫的生理响应[J]. 植物生理学报, 2018, 54(6):1064-1072. |
Shang XH, Shan ZY, Yan HB, et al. Physiological responses of cassava variety ‘Xinxuan 048’ diploid and autotetraploid to drought stress[J]. Plant Physiol J, 2018, 54(6):1064-1072. | |
[17] |
Yin XM, Zhan RL, He YD, et al. Morphological description of a novel synthetic allotetraploid(A1A1G3G3)of Gossypium herbaceum L. and G. nelsonii Fryx. suitable for disease-resistant breeding applications[J]. PLoS One, 2020, 15(12):e0242620.
doi: 10.1371/journal.pone.0242620 URL |
[18] | 张旭. 基于表型性状及SRAP标记的马铃薯遗传多样性评价[D]. 太谷: 山西农业大学, 2019. |
Zhang X. Genetic diversity assessment of potato based on phenotypic traits and SRAP markers[D]. Taigu: Shanxi Agricultural University, 2019. | |
[19] |
Li G, Quiros CF. Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2001, 103(2/3):455-461.
doi: 10.1007/s001220100570 URL |
[20] | 宋平, 王志安, 王志宁. 棉属中染色体倍性与叶片气孔性状的关系[J]. 浙江农业大学学报, 1989(1):39-44. |
Song P, Wang ZA, Wang ZN. Relationship between chromosome ploidy and stomatal characters of leaf in Gossypium[J]. J Zhejiang Agric Univ, 1989(1):39-44. | |
[21] | 李霖锋, 刘宝. 植物多倍化与多倍体基因组进化研究进展[J]. 中国科学:生命科学, 2019, 49(4):327-337. |
Li LF, Liu B. Recent advances of plant polyploidy and polyploid genome evolution[J]. Sci Sin Vitae, 2019, 49(4):327-337.
doi: 10.1360/N052018-00201 URL |
|
[22] |
Comai L. Genetic and epigenetic interactions in allopolyploid plants[J]. Plant Mol Biol, 2000, 43(2/3):387-399.
doi: 10.1023/A:1006480722854 URL |
[23] |
Chen ZJ, Ni ZF. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids[J]. Bioessays, 2006, 28(3):240-252.
doi: 10.1002/bies.20374 URL |
[24] |
Madlung A, Wendel JF. Genetic and epigenetic aspects of polyploid evolution in plants[J]. Cytogenet Genome Res, 2013, 140(2/3/4):270-285.
doi: 10.1159/000351430 URL |
[25] |
Wendel JF, Lisch D, Hu GJ, et al. The long and short of doubling down:polyploidy, epigenetics, and the temporal dynamics of genome fractionation[J]. Curr Opin Genet Dev, 2018, 49:1-7.
doi: 10.1016/j.gde.2018.01.004 URL |
[26] |
Mao L, Ling HQ, Wan JM. Wheat functional genomics research in China:a decade of development[J]. Crop J, 2018, 6(1):1-6.
doi: 10.1016/j.cj.2018.01.001 URL |
[27] |
Xu CM, Bai Y, Lin XY, et al. Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice sub species[J]. Mol Biol Evol, 2014, 31(5):1066-1076.
doi: 10.1093/molbev/msu085 URL |
[28] |
Hu YL, Sun DQ, Hu HG, et al. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola(Averrhoa carambola L.)genotypes[J]. Sci Hortic, 2021, 277:109843.
doi: 10.1016/j.scienta.2020.109843 URL |
[29] |
Chen HL, Lu ZW, Wang J, et al. Induction of new tetraploid genotypes and heat tolerance assessment in Asparagus officinalis L[J]. Sci Hortic, 2020, 264:109168.
doi: 10.1016/j.scienta.2019.109168 URL |
[30] |
Gordej IS, Lyusikov OM, Gordej IA. Zygotic autopolyploidization of rye(Secale cereale L.)[J]. Cytol Genet, 2019, 53(5):357-362.
doi: 10.3103/S0095452719050086 URL |
[31] |
Wang LJ, Sheng MY, Wen PC, et al. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum(L.)Gaertn[J]. Bot Stud, 2017, 58(1):2.
doi: 10.1186/s40529-016-0157-3 URL |
[32] | 张巍巍, 刘富强, 轩淑欣, 等. 四倍体黑芥的获得与鉴定[J]. 园艺学报, 2015, 42(12):2505-2511. |
Zhang WW, Liu FQ, Xuan SX, et al. Obtaining and identification of tetraploid Brassica nigra[J]. Acta Hortic Sin, 2015, 42(12):2505-2511. | |
[33] | 吕晔, 薛治慧, 吴改娥, 等. 三倍体和四倍体枣减数分裂行为异常现象观察[J]. 园艺学报, 2018, 45(4):659-668. |
Lv Y, Xue ZH, Wu GE, et al. Abnormal meiosis behaviors of triploid and tetraploid Chinese jujube[J]. Acta Hortic Sin, 2018, 45(4):659-668. | |
[34] | 彭滢, 李晓妍, 肖璇. 柑橘多胚性砧木枳橙同源四倍体的发掘与SSR鉴定[J]. 分子植物育种, 2020, 18(4):1211-1215. |
Peng Y, Li XY, Xiao X. Excavation and SSR identification of autotetraploids in Citrus polyembryonic rootstock ‘citrange’[J]. Mol Plant Breed, 2020, 18(4):1211-1215. | |
[35] | 刘文革, 王鸣, 阎志红. 西瓜二倍体及同源多倍体遗传差异的AFLP分析[J]. 果树学报, 2004, 21(1):46-49. |
Liu WG, Wang M, Yan ZH. AFLP analysis of the genetic diversity between diploid and autopoly-ploidy watermelon[J]. J Fruit Sci, 2004, 21(1):46-49. | |
[36] |
DeLaat AMM, Gohde W, Vogelzakg MJDC. Determination of ploidy of single plants and plant populations by flow cytometry[J]. Plant Breed, 1987, 99(4):303-307.
doi: 10.1111/j.1439-0523.1987.tb01186.x URL |
[37] | Wu J, Sang YR, Zhou Q, et al. Colchicine in vitro tetraploid induction of Populus hopeiensis from leaf blades[J]. Plant Cell Tissue Organ Cult PCTOC, 2020, 141(2):339-349. |
[1] | XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava [J]. Biotechnology Bulletin, 2023, 39(6): 31-48. |
[2] | WANG Yi-fan, HOU Lin-hui, CHANG Yong-chun, YANG Ya-jie, CHEN Tian, ZHAO Zhu-yue, RONG Er-hua, WU Yu-xiang. Synthesis and Character Identification of Allohexaploid Between Gossypium hirsutum and G. gossypioides [J]. Biotechnology Bulletin, 2023, 39(5): 168-176. |
[3] | KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(10): 132-139. |
[4] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[5] | ZHAO Zhu-yue, SHEN Zhuang-zhuang, WANG Yi-fan, YANG Ya-jie, RONG Er-hua, WU Yu-xiang. Character Identification and Genetic Analysis of Distant Hybrid Between Gossypium hirsutum and Gossypium sturtianum [J]. Biotechnology Bulletin, 2021, 37(5): 19-27. |
[6] | SUN Ping-yong, ZHANG Wu-han, SHU Fu, HE Qiang, ZHANG Li, PENG Zhi-rong, DENG Hua-feng. Analysis of Mutation Sites of OsBADH2 Gene in Fragrant Rice and Development of Related Functional Marker [J]. Biotechnology Bulletin, 2021, 37(4): 1-7. |
[7] | WANG Yan-li, YANG Yi-ming, FAN Shu-tian, ZHAO Ying, XU Pei-lei, LU Wen-peng, LI Chang-yu. Genetic Diversity Analysis of 73 Vitis amurensis and Its Hybrids Offsprings Based on SSR Molecular Markers [J]. Biotechnology Bulletin, 2021, 37(1): 189-197. |
[8] | ZHAO Guo-long, LIN Chun-jing, JIN Dong-chun, ZHANG Chun-bao. Advances in Restorer Genes for Fertility on Cytoplasmic Male Sterility in Major Crops [J]. Biotechnology Bulletin, 2020, 36(1): 116-125. |
[9] | YANG Yan-yan, HUO Yu-meng, WU Xiong, LIU Bing-jiang. Application of Male Sterility Molecular Markers in Identification of Onion Haploid [J]. Biotechnology Bulletin, 2019, 35(12): 169-174. |
[10] | WANG Ping, WANG Chun-yu, ZHANG Li-xia, CONG Ling, ZHU Zhen-xing, LU Xiao-chun. Development of SSR Molecular Markers with Sorghum Polymorphism Using Re-sequencing [J]. Biotechnology Bulletin, 2019, 35(11): 217-223. |
[11] | WANG Xiao-yi, KONG De-jing, AI Peng-fei. Construction of Genetic Linkage Maps for Armeniaca vulgaris×A. sibirica with Sequence-related Amplified Polymorphism and Simple Sequence Repeats [J]. Biotechnology Bulletin, 2018, 34(11): 103-110. |
[12] | CAI Zhi-jun, LI Jin-jun, ZHOU De-yin, FU Hao-wei. Improving the Percentage of Exerted Stigma in CMS Lines of Japonica Hybrid Rice by Molecular Marker-assisted Selection [J]. Biotechnology Bulletin, 2016, 32(3): 52-57. |
[13] | LIU Guo-sheng, ZHANG Da-le. The Application of the Functional Molecular Marker in Wheat Breeding [J]. Biotechnology Bulletin, 2016, 32(11): 18-29. |
[14] | LIU Li-ping, ZHANG Dong-zhi, ZHANG Chong, CHEN Jin-huan. Research Progress of Stress Tolerance and Breeding Research on Lycium ruthenicum Murr [J]. Biotechnology Bulletin, 2016, 32(10): 118-127. |
[15] | Dong Bin, Li Rongxi, Huang Yongfang, Hong Wenhong, Tan Sha,. Application of Molecular Markers in Studies of Camellia oleifera [J]. Biotechnology Bulletin, 2015, 31(6): 74-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||